Citation: | Wang Bing, Xiang Zhilei, Zhou Zongyi, Shen Gaoliang, Huang Jingcun, Han Jingyu, Wang Andong, Chen Ziyong. Research status and prospect of titanium alloys resistant to high temperature of 600 ℃ and above[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(2): 42-50, 71. doi: 10.7513/j.issn.1004-7638.2024.02.007 |
[1] |
Li Miaoquan, Li Hong, Luo Jiao. Titanium alloy precision forging [M]. Beijing: Science Press, 2016. (李淼泉, 李宏, 罗皎. 钛合金精密锻造[M]. 北京: 科学出版社, 2016.
Li Miaoquan, Li Hong, Luo Jiao. Titanium alloy precision forging [M]. Beijing: Science Press, 2016.
|
[2] |
He Danqi, Shi Hao. Discussion on application of titanium alloy in aerospace field[J]. China High-tech Enterprises, 2016(27):50−51. (何丹琪, 石颢. 钛合金在航空航天领域中的应用探讨[J]. 中国高新技术企业, 2016(27):50−51. doi: 10.13535/j.cnki.11-4406/n.2016.27.023
He Danqi, Shi Hao. Discussion on application of titanium alloy in aerospace field[J]. China High-tech Enterprises, 2016(27): 50−51. doi: 10.13535/j.cnki.11-4406/n.2016.27.023
|
[3] |
Tian Yongwu, Zhu Lele, Li Weidong, et al. Application and development of high temperature titanium alloy[J]. Hot Working Technology, 2020,49(8):17−20. (田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020,49(8):17−20. doi: 10.14158/j.cnki.1001-3814.20183380
Tian Yongwu, Zhu Lele, Li Weidong, et al. Application and development of high temperature titanium alloy[J]. Hot Working Technology, 2020, 49(8): 17−20. doi: 10.14158/j.cnki.1001-3814.20183380
|
[4] |
Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3):844−879. doi: 10.1016/j.actamat.2012.10.043
|
[5] |
Liu Yingying, Chen Ziyong, Jin Tounan, et al. Development status and prospect of 600 ℃ high temperature titanium alloy[J]. Materials Review, 2018,32(11):1863−1869. (刘莹莹, 陈子勇, 金头男, 等. 600 ℃高温钛合金发展现状与展望[J]. 材料导报, 2018,32(11):1863−1869. doi: 10.11896/j.issn.1005-023X.2018.11.013
Liu Yingying, Chen Ziyong, Jin Tounan, et al. Development status and prospect of 600 ℃ high temperature titanium alloy[J]. Materials Review, 2018, 32(11): 1863−1869. doi: 10.11896/j.issn.1005-023X.2018.11.013
|
[6] |
Chen Ziyong, Liu Yingying, Jin Yanfang, et al. Research status and progress of 650 ℃ resistant titanium alloy for aero-engine[J]. Aeronautical Manufacturing Technology, 2019,62(19):22−30. (陈子勇, 刘莹莹, 靳艳芳, 等. 航空发动机用耐650 ℃高温钛合金研究现状与进展[J]. 航空制造技术, 2019,62(19):22−30.
Chen Ziyong, Liu Yingying, Jin Yanfang, et al. Research status and progress of 650 ℃ resistant titanium alloy for aero-engine[J]. Aeronautical Manufacturing Technology, 2019, 62(19): 22−30.
|
[7] |
Zheng Zhuangzhuang. Study on thermal deformation behavior and microstructure properties of high temperature titanium alloy enhanced by nano Y2O3 [D]. Harbin: Harbin Institute of Technology, 2019. (郑壮壮. 纳米Y2O3增强高温钛合金热变形行为及板材组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
Zheng Zhuangzhuang. Study on thermal deformation behavior and microstructure properties of high temperature titanium alloy enhanced by nano Y2O3 [D]. Harbin: Harbin Institute of Technology, 2019.
|
[8] |
He Chunyan, Zhang Lijun. Development and application of high temperature titanium alloys at home and abroad[J]. World Nonferrous Metals, 2016(1):21−25. (何春艳, 张利军. 国内外高温钛合金的发展与应用[J]. 世界有色金属, 2016(1):21−25.
He Chunyan, Zhang Lijun. Development and application of high temperature titanium alloys at home and abroad[J]. World Nonferrous Metals, 2016(1): 21−25.
|
[9] |
Huo Dongxing, Liang Jinglong, Li Hui, et al. Research and application progress of titanium alloy[J]. Casting Technology, 2016,37(10):2065−2066. (霍东兴, 梁精龙, 李慧, 等. 钛合金研究及应用进展[J]. 铸造技术, 2016,37(10):2065−2066. doi: 10.16410/j.issn1000-8365.2016.10.005
Huo Dongxing, Liang Jinglong, Li Hui, et al. Research and application progress of titanium alloy[J]. Casting Technology, 2016, 37(10): 2065−2066. doi: 10.16410/j.issn1000-8365.2016.10.005
|
[10] |
Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J]. Materials Science & Engineering: A, 1998,243(1/2):32−45.
|
[11] |
Rosenberger A H, Madsen A, Ghonem H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100[J]. Journal of Materials Engineering and Performance, 1995,4(2):182−187. doi: 10.1007/BF02664112
|
[12] |
Wang Kaiting. Development and application of high temperature titanium alloys[J]. World Nonferrous Metals, 2021(14):21−22. (王恺婷. 高温钛合金的发展与应用[J]. 世界有色金属, 2021(14):21−22. doi: 10.3969/j.issn.1002-5065.2021.14.008
Wang Kaiting. Development and application of high temperature titanium alloys[J]. World Nonferrous Metals, 2021(14): 21−22. doi: 10.3969/j.issn.1002-5065.2021.14.008
|
[13] |
Wang Qingjiang, Liu Jianrong, Yang Rui. Current situation and prospect of high temperature titanium alloys[J]. Journal of Aeronautical Materials, 2014,34(4):1−26. (王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014,34(4):1−26. doi: 10.11868/j.issn.1005-5053.2014.4.001
Wang Qingjiang, Liu Jianrong, Yang Rui. Current situation and prospect of high temperature titanium alloys[J]. Journal of Aeronautical Materials, 2014, 34(4): 1−26. doi: 10.11868/j.issn.1005-5053.2014.4.001
|
[14] |
Singh N, Singh V. Effect of temperature on tensile properties of near-α alloy Ti metal 834[J]. Materials Science and Engineering: A, 2008,485(1-2):130−139. doi: 10.1016/j.msea.2007.07.064
|
[15] |
Li S, Deng T, Zhang Y, et al. Review on the creep resistance of high-temperature titanium alloy[J]. Transactions of the Indian Institute of Metals, 2021,74(2):215−222. doi: 10.1007/s12666-020-02137-x
|
[16] |
Li Xin, Zhao Jun, Liu Shibing, et al. Research progress of high temperature titanium alloys for aviation [C]// Casting Branch of Chinese Mechanical Engineering Society Proceedings of China Foundry Week: Volume 2020. Hefei: Special Casting and Non-ferrous Alloys, 2020: 5-9. (李欣, 赵军, 刘时兵, 等. 航空用高温钛合金的研究进展[C]//中国机械工程学会铸造分会中国铸造活动周论文集: 2020年卷. 合肥: 特种铸造及有色合金, 2020: 5-9.
Li Xin, Zhao Jun, Liu Shibing, et al. Research progress of high temperature titanium alloys for aviation [C]// Casting Branch of Chinese Mechanical Engineering Society Proceedings of China Foundry Week: Volume 2020. Hefei: Special Casting and Non-ferrous Alloys, 2020: 5-9.
|
[17] |
Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering: A, 1996,213(1):103−114.
|
[18] |
Cai Jianming, Li Zhenxi, Ma Jimin, et al. Research and development of 600 ℃ high temperature titanium alloy for aeroengine[J]. Materials Review, 2005(1):50−53. (蔡建明, 李臻熙, 马济民, 等. 航空发动机用600 ℃高温钛合金的研究与发展[J]. 材料导报, 2005(1):50−53.
Cai Jianming, Li Zhenxi, Ma Jimin, et al. Research and development of 600 ℃ high temperature titanium alloy for aeroengine[J]. Materials Review, 2005(1): 50−53.
|
[19] |
Cai Jianming, Hao Mengyi, Li Xueming, et al. Study on composition characteristics and microstructure of BT36 high temperature titanium alloy[J]. Materials Engineering, 2000(2):10−12. (蔡建明, 郝孟一, 李学明, 等. BT36高温钛合金的成分特点及组织研究[J]. 材料工程, 2000(2):10−12. doi: 10.3969/j.issn.1001-4381.2000.02.003
Cai Jianming, Hao Mengyi, Li Xueming, et al. Study on composition characteristics and microstructure of BT36 high temperature titanium alloy[J]. Materials Engineering, 2000(2): 10−12. doi: 10.3969/j.issn.1001-4381.2000.02.003
|
[20] |
Gao Xiongxiong. Study on microstructure evolution of Ti60 titanium alloy during bimodal microstructure regulation [D]. Xi’an: Northwestern Polytechnical University, 2018. (高雄雄. Ti60钛合金双态组织调控过程中显微组织演变规律研究[D]. 西安: 西北工业大学, 2018.
Gao Xiongxiong. Study on microstructure evolution of Ti60 titanium alloy during bimodal microstructure regulation [D]. Xi’an: Northwestern Polytechnical University, 2018.
|
[21] |
Sun Meng. Ansteel group developed Ti60 high temperature titanium alloy[N]. China Metallurgical News, 2022-03-22. (孙萌. 鞍钢集团研制出Ti60高温钛合金[N]. 中国冶金报, 2022-03-22.
Sun Meng. Ansteel group developed Ti60 high temperature titanium alloy[N]. China Metallurgical News, 2022-03-22.
|
[22] |
Tang Haifang. Study on microstructure and high temperature properties of Ti600 alloy[D]. Shengyang: Northeastern University, 2010. (汤海芳. Ti600合金组织和高温性能的研究[D]. 沈阳: 东北大学, 2010.
Tang Haifang. Study on microstructure and high temperature properties of Ti600 alloy[D]. Shengyang: Northeastern University, 2010.
|
[23] |
Tang Haifang, Hong Quan, Zhao Yongqing, et al. Effect of rare earth element Y on microstructure and properties of Ti600 alloy[J]. Hot Working Technology, 2010,39(24):11−14. (汤海芳, 洪权, 赵永庆, 等. 稀土元素Y对Ti600合金组织和性能的影响[J]. 热加工工艺, 2010,39(24):11−14. doi: 10.14158/j.cnki.1001-3814.2010.24.013
Tang Haifang, Hong Quan, Zhao Yongqing, et al. Effect of rare earth element Y on microstructure and properties of Ti600 alloy[J]. Hot Working Technology, 2010, 39(24): 11−14. doi: 10.14158/j.cnki.1001-3814.2010.24.013
|
[24] |
Duan Rui, Zhang Hua, Cai Jianming, et al. Effect of microstructure on creep behavior of near-α TG6 titanium alloy at high temperature[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):11−15. (段锐, 张华, 蔡建明, 等. 显微组织对近α型TG6钛合金高温蠕变变形行为的影响[J]. 中国有色金属学报, 2010,20(S1):11−15. doi: 10.19476/j.ysxb.1004.0609.2010.s1.003
Duan Rui, Zhang Hua, Cai Jianming, et al. Effect of microstructure on creep behavior of near-α TG6 titanium alloy at high temperature[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 11−15. doi: 10.19476/j.ysxb.1004.0609.2010.s1.003
|
[25] |
Cai Jianming, Cao Chunxiao. Design and application prospect of a new generation of 600 ℃ high temperature titanium alloy materials[J]. Journal of Aeronautical Materials, 2014,34(4):27−36. (蔡建明, 曹春晓. 新一代600 ℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报, 2014,34(4):27−36.
Cai Jianming, Cao Chunxiao. Design and application prospect of a new generation of 600 ℃ high temperature titanium alloy materials[J]. Journal of Aeronautical Materials, 2014, 34(4): 27−36.
|
[26] |
Wu Xiyue, Chen Zhiyong, Cheng Chao, et al. Effect of heat treatment on microstructure, texture and tensile properties of Ti65 titanium alloy sheet[J]. Journal of Materials Research, 2019,33(10):785−793. (吴汐玥, 陈志勇, 程超, 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响[J]. 材料研究学报, 2019,33(10):785−793. doi: 10.11901/1005.3093.2019.110
Wu Xiyue, Chen Zhiyong, Cheng Chao, et al. Effect of heat treatment on microstructure, texture and tensile properties of Ti65 titanium alloy sheet[J]. Journal of Materials Research, 2019, 33(10): 785−793. doi: 10.11901/1005.3093.2019.110
|
[27] |
Yue Ke. Microstructure and key mechanical properties at high temperature of Ti65 alloy[D]. Hefei: University of Science and Technology of China, 2019. (岳颗. Ti65合金显微组织及关键高温力学性能[D]. 合肥: 中国科学技术大学, 2019.
Yue Ke. Microstructure and key mechanical properties at high temperature of Ti65 alloy[D]. Hefei: University of Science and Technology of China, 2019.
|
[28] |
Liu Jingyuan. Study on superplastic forming properties and microstructure evolution of Ti750 high temperature titanium alloy[D]. Harbin: Harbin Institute of Technology, 2011. (刘泾源. Ti750高温钛合金超塑成形性能及组织演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
Liu Jingyuan. Study on superplastic forming properties and microstructure evolution of Ti750 high temperature titanium alloy[D]. Harbin: Harbin Institute of Technology, 2011.
|
[29] |
Yao Gang, Fu Mingjie. Analysis of phase microstructure change during thermal process of TNW700 high temperature titanium alloy[J]. Materials Review, 2018,32(20):3584−3589. (姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018,32(20):3584−3589. doi: 10.11896/j.issn.1005-023X.2018.20.016
Yao Gang, Fu Mingjie. Analysis of phase microstructure change during thermal process of TNW700 high temperature titanium alloy[J]. Materials Review, 2018, 32(20): 3584−3589. doi: 10.11896/j.issn.1005-023X.2018.20.016
|
[30] |
Zeng Liying, Zhao Yongqing, Hong Quan, et al. Research and development of 600 ℃ high temperature titanium alloy[J]. Progress in Titanium Industry, 2012,29(5):1−5. (曾立英, 赵永庆, 洪权, 等. 600 ℃高温钛合金的研发[J]. 钛工业进展, 2012,29(5):1−5.
Zeng Liying, Zhao Yongqing, Hong Quan, et al. Research and development of 600 ℃ high temperature titanium alloy[J]. Progress in Titanium Industry, 2012, 29(5): 1−5.
|
[31] |
Wang S, Huang L J, Geng L, et al. Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements[J]. Scientific Reports, 2017,7(1):40823−40833. doi: 10.1038/srep40823
|
[32] |
Zhao Pengfei, Liu Yue, Tang Li, et al. Study on microstructure and mechanical properties of TC11 titanium matrix composites reinforced by sic particles[J]. Progress in Titanium Industry, 2021,38(6):31−36. (赵鹏飞, 刘跃, 唐莉, 等. 碳化硅颗粒增强TC11钛基复合材料的组织与力学性能研究[J]. 钛工业进展, 2021,38(6):31−36. doi: 10.11782/j.issn.1009-9964.2021.6.tgyjz202106007
Zhao Pengfei, Liu Yue, Tang Li, et al. Study on microstructure and mechanical properties of TC11 titanium matrix composites reinforced by sic particles[J]. Progress in Titanium Industry, 2021, 38(6): 31−36. doi: 10.11782/j.issn.1009-9964.2021.6.tgyjz202106007
|
[33] |
Zhang Ruigang, Yang Qinghao, Liu Yue, et al. High temperature properties and microstructure of silicon carbide nanowires reinforced Ti60 composites[J]. Progress in Titanium Industry, 2021,38(5):14−18. (张瑞刚, 杨庆浩, 刘跃, 等. 碳化硅纳米线增强Ti60复合材料高温性能及显微组织研究[J]. 钛工业进展, 2021,38(5):14−18. doi: 10.13567/j.cnki.issn1009-9964.2021.05.006
Zhang Ruigang, Yang Qinghao, Liu Yue, et al. High temperature properties and microstructure of silicon carbide nanowires reinforced Ti60 composites[J]. Progress in Titanium Industry, 2021, 38(5): 14−18. doi: 10.13567/j.cnki.issn1009-9964.2021.05.006
|
[34] |
Yu Lanlan, Mao Xiaonan, Zhao Yongqing, et al. New advances in particle-reinforced titanium matrix composites[J]. Rare Metals Express, 2006(4):1−5. (于兰兰, 毛小南, 赵永庆, 等. 颗粒增强钛基复合材料研究新进展[J]. 稀有金属快报, 2006(4):1−5.
Yu Lanlan, Mao Xiaonan, Zhao Yongqing, et al. New advances in particle-reinforced titanium matrix composites[J]. Rare Metals Express, 2006(4): 1−5.
|
[35] |
Zhao E, Sun S, Zhang Y. Recent advances in silicon containing high temperature titanium alloys[J]. Journal of Materials Research and Technology, 2021,14:3029−3042. doi: 10.1016/j.jmrt.2021.08.117
|
[36] |
Mishra H, Ghosal P, Nandy T K, et al. Influence of Fe and Ni on creep of near α-Ti alloy IMI834[J]. Materials Science and Engineering: A, 2005,399(1-2):222−231. doi: 10.1016/j.msea.2005.03.027
|
[37] |
Che Jinda, Jiang Beibei, Wang Qing, et al. Effect of trace elements (Hf/Ta/Nb) on oxidation resistance of near α-Ti alloy at high temperature[J]. Chinese Journal of Nonferrous Metals, 2016,26(10):2086−2092. (车晋达, 姜贝贝, 王清, 等. 微量元素(Hf/Ta/Nb)添加对近α-Ti合金高温抗氧化性能的影响[J]. 中国有色金属学报, 2016,26(10):2086−2092.
Che Jinda, Jiang Beibei, Wang Qing, et al. Effect of trace elements (Hf/Ta/Nb) on oxidation resistance of near α-Ti alloy at high temperature[J]. Chinese Journal of Nonferrous Metals, 2016, 26(10): 2086−2092.
|
[38] |
Gigliotti F X, Rowe R G, Deceased G E W. High strength oxidation resistant alpha titanium alloy: USA,4906436[P]. 1990-03-06.
|
[39] |
Gao Xiongxiong. Study on microstructure evolution of Ti60 titanium alloy during duplexmicrostructure regulation[D]. Xi’an: Northwestern Polytechnical University, 2018. (高雄雄. Ti60钛合金双态组织调控过程中显微组织演变规律研究[D]. 西安: 西北工业大学, 2018.
Gao Xiongxiong. Study on microstructure evolution of Ti60 titanium alloy during duplexmicrostructure regulation[D]. Xi’an: Northwestern Polytechnical University, 2018.
|
[40] |
Ding Beibei, Li Bolong, Han Peng, et al. Effect of Nd on thermal stability of a near-α high temperature titanium alloy[J]. Hot Working Technology, 2011,40(18):4−7. (丁蓓蓓, 李伯龙, 韩鹏, 等. Nd对一种近α型高温钛合金热稳定性的影响[J]. 热加工工艺, 2011,40(18):4−7. doi: 10.3969/j.issn.1001-3814.2011.18.002
Ding Beibei, Li Bolong, Han Peng, et al. Effect of Nd on thermal stability of a near-α high temperature titanium alloy[J]. Hot Working Technology, 2011, 40(18): 4−7. doi: 10.3969/j.issn.1001-3814.2011.18.002
|
[41] |
Wu Y, Guo Y, Xu G, et al. Effects of trace erbium addition on microstructure and mechanical properties of Ti6Al4V-xEr alloys[J]. Metals, 2019,9(6):628. doi: 10.3390/met9060628
|
[42] |
Deng T, Li S, Liang Y, et al. Effects of scandium and silicon addition on the microstructure and mechanical properties of Ti-6Al-4V alloy[J]. Journal of Materials Research and Technology, 2020,9(3):5676−5688. doi: 10.1016/j.jmrt.2020.03.092
|
[43] |
Tian Wei, Fu Yu, Zhong Yan, et al. Effect of forging process on microstructure and mechanical properties of TC17 titanium alloy[J]. Journal of Materials and Heat Treatment, 2016,37(9):57−61. (田伟, 伏宇, 钟燕, 等. 锻造工艺对TC17钛合金的显微组织和力学性能的影响[J]. 材料热处理学报, 2016,37(9):57−61.
Tian Wei, Fu Yu, Zhong Yan, et al. Effect of forging process on microstructure and mechanical properties of TC17 titanium alloy[J]. Journal of Materials and Heat Treatment, 2016, 37(9): 57−61.
|
[44] |
Balasundar I, Raghu T, Kashyap B P. Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α+β regime[J]. Materials Science & Engineering A, 2014,609:241−249.
|
[45] |
Omprakash C M, Satyanarayana D V V, Kumar V. Effect of microstructure on creep and creep crack growth behaviour of titanium alloy[J]. Transactions of the Indian Institute of Metals, 2010,63:457−459. doi: 10.1007/s12666-010-0064-3
|
[46] |
Zhou Wei, Xin Shewei, Hong Quan, et al. Effect of solution cooling rate on microstructure and mechanical properties of short-time high temperature titanium alloy[J]. Rare Metals and Cemented Carbides, 2020,48(4):49−52. (周伟, 辛社伟, 洪权, 等. 固溶冷却速度对短时高温钛合金显微组织和力学性能的影响[J]. 稀有金属与硬质合金, 2020,48(4):49−52.
Zhou Wei, Xin Shewei, Hong Quan, et al. Effect of solution cooling rate on microstructure and mechanical properties of short-time high temperature titanium alloy[J]. Rare Metals and Cemented Carbides, 2020, 48(4): 49−52.
|
[47] |
Liu Qitong. Study on low-cycle fatigue properties of TC4ELI alloy with duplexmicrostructure[D]. Lanzhou: Lanzhou University of Technology, 2020. (刘栖桐. 双态组织TC4ELI合金低周疲劳性能研究[D]. 兰州: 兰州理工大学, 2020.
Liu Qitong. Study on low-cycle fatigue properties of TC4ELI alloy with duplexmicrostructure[D]. Lanzhou: Lanzhou University of Technology, 2020.
|
[48] |
Liu Qinghua, Hui Songxiao, Ye Wenjun, et al. Study on dynamic mechanical properties of TC4 ELI titanium alloy with different aicrostructure[J]. Rare Metals, 2012,36(4):517−522. (刘清华, 惠松骁, 叶文君, 等. 不同组织状态TC4 ELI钛合金动态力学性能研究[J]. 稀有金属, 2012,36(4):517−522.
Liu Qinghua, Hui Songxiao, Ye Wenjun, et al. Study on dynamic mechanical properties of TC4 ELI titanium alloy with different aicrostructure[J]. Rare Metals, 2012, 36(4): 517−522.
|
[49] |
Zhu Zhishou. Research and development of new high performance titanium alloy materials for aviation structures[J]. Aeronautical Science and Technology, 2012(1):5−9. (朱知寿. 航空结构用新型高性能钛合金材料技术研究与发展[J]. 航空科学技术, 2012(1):5−9.
Zhu Zhishou. Research and development of new high performance titanium alloy materials for aviation structures[J]. Aeronautical Science and Technology, 2012(1): 5−9.
|
[50] |
Xin Shewei, Hong Quan, Lu Yafeng, et al. Microstructure stability of high temperature Ti600 titanium alloy at 600 ℃[J]. Rare Metal Materials and Engineering, 2010,39(11):1918−1922. (辛社伟, 洪权, 卢亚锋, 等. Ti600高温钛合金600 ℃下组织稳定性研究[J]. 稀有金属材料与工程, 2010,39(11):1918−1922.
Xin Shewei, Hong Quan, Lu Yafeng, et al. Microstructure stability of high temperature Ti600 titanium alloy at 600 ℃[J]. Rare Metal Materials and Engineering, 2010, 39(11): 1918−1922.
|
[51] |
Li Dong, Wan Xiaojing. Study on thermal stability of titanium alloy Ⅲ: Thermal stability criterion and its application[J]. Acta Metallurgica Sinica, 1984(6):391−397. (李东, 万晓景. 钛合金热稳定性研究Ⅲ:热稳定性判据及其应用[J]. 金属学报, 1984(6):391−397.
Li Dong, Wan Xiaojing. Study on thermal stability of titanium alloy Ⅲ: Thermal stability criterion and its application[J]. Acta Metallurgica Sinica, 1984(6): 391−397.
|
[52] |
Madsen A, Ghonem H. Separating the effects of Ti3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593 ℃ in a near-alpha titanium alloy[J]. On Academic, 1995,4(3):301−307.
|
[53] |
Gysler A, Weissmann S. Effect of order in Ti3A1 particles and of temperature on the deformation behavior of age-hardened Ti-A1 alloys[J]. Material Science & Engineering, 1997,27(2):181−194.
|
[54] |
Peng Na. Study on critical size effect of α2 phase in high temperature titanium alloy[D]. Shenyang: Shenyang University, 2007. (彭娜. 高温钛合金中α2相的临界尺寸效应研究[D]. 沈阳: 沈阳大学, 2007.
Peng Na. Study on critical size effect of α2 phase in high temperature titanium alloy[D]. Shenyang: Shenyang University, 2007.
|
[55] |
Zhang Jun, Li Dong. α2 Phase in high temperature titanium alloy[M]. Shenyang: Northeastern University Press, 2002. (张钧, 李东. 高温钛合金中的α2相[M]. 沈阳: 东北大学出版社, 2002.
Zhang Jun, Li Dong. α2 Phase in high temperature titanium alloy[M]. Shenyang: Northeastern University Press, 2002.
|
[56] |
Zhao Liang, Liu Jianrong, Wang Qingjiang, et al. Effect of precipitation on creep and durability of Ti60 titanium alloy[J]. Journal of Materials Research, 2009,23(1):1−5. (赵亮, 刘建荣, 王清江, 等. 析出相对Ti60钛合金蠕变和持久性能的影响[J]. 材料研究学报, 2009,23(1):1−5. doi: 10.3321/j.issn:1005-3093.2009.01.001
Zhao Liang, Liu Jianrong, Wang Qingjiang, et al. Effect of precipitation on creep and durability of Ti60 titanium alloy[J]. Journal of Materials Research, 2009, 23(1): 1−5. doi: 10.3321/j.issn:1005-3093.2009.01.001
|
[57] |
Zhu Xuhui. Study on long-term microstructure stability of near-α high temperature titanium alloy Ti600[D]. Shenyang: Northeastern University, 2020. (朱旭晖. 近α型高温钛合金Ti600长期时效组织稳定性研究[D]. 沈阳: 东北大学, 2020.
Zhu Xuhui. Study on long-term microstructure stability of near-α high temperature titanium alloy Ti600[D]. Shenyang: Northeastern University, 2020.
|
[58] |
Li J, Cai J, Xu Y, et al. Influences of thermal exposure on the microstructural evolution and subsequent mechanical properties of a near-α high temperature titanium alloy[J]. Materials Science and Engineering: A, 2020,774:138934−138947. doi: 10.1016/j.msea.2020.138934
|
[59] |
Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals[J]. Metallurgical and Materials Transactions A, 2002,33(3):837−850. doi: 10.1007/s11661-002-0153-y
|