Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
SHANG Yuting, LIU Chan, LU Ruifang, YANG Fang, FENG Yujun, YIN Hongyao. Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 34-39. doi: 10.7513/j.issn.1004-7638.2025.01.005
Citation: SHANG Yuting, LIU Chan, LU Ruifang, YANG Fang, FENG Yujun, YIN Hongyao. Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 34-39. doi: 10.7513/j.issn.1004-7638.2025.01.005

Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2

doi: 10.7513/j.issn.1004-7638.2025.01.005
  • Received Date: 2024-07-23
  • Publish Date: 2025-02-27
  • In the production process of titanium dioxide by sulfuric acid method, the selection of salt treatment agents has a significant impact on the surface properties of rutile titanium dioxide crystals. Thus it is necessary to carry out an in-depth study to reveal the differences in the surface properties of titanium dioxide caused by different salt treating agents. In this study, the differences in surface morphology, crystal surface defects, and surface hydroxyl groups of rutile samples treated with zinc-based salt and aluminium-based salt were investigated using SEM, XPS, and BET instruments, respectively. The results show that the aluminium salt-treated rutile samples present elongated shape and suffer from greater sedimentation resistance during the sedimentation process. Meanwhile, the aluminium salt-treated rutile samples have more crystal defects and surface hydroxyls on the surface than the zinc salt-treated samples, and also have more pronounced dissociative effects on water molecules, higher surface potential in the water-dispersed system, and are more capable of forming more stable dispersed systems.
  • loading
  • [1]
    LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023,44(2):34-39. (刘婵, 路瑞芳, 吴健春, 等. 煅烧过程中锌系与铝系钛白粒子演变规律的对比研究[J]. 钢铁钒钛, 2023,44(2):34-39.

    LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 34-39.
    [2]
    WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020,41(2):29-32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29-32.

    WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 29-32.
    [3]
    LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022,43(3):14-19. (路瑞芳, 孙蔷, 杨芳, 等. 铝锌复合盐处理对金红石型TiO2质量的影响研究[J]. 钢铁钒钛, 2022,43(3):14-19.

    LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 14-19.
    [4]
    CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021,42(4):44-47,62. (曹磊, 淦文军, 柯良辉, 等. Al掺杂对固相法制备TiO2晶体生长影响的研究[J]. 涂料技术与文摘, 2021,42(4):44-47,62.

    CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021, 42(4): 44-47,62.
    [5]
    RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016,48(7):21-24. (容尔益, 朱家文, 陈葵, 等. 煅烧晶种和磷、镁对二氧化钛晶体的影响[J]. 无机盐工业, 2016,48(7):21-24.

    RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016, 48(7): 21-24.
    [6]
    MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023,44(1):26-31. (马维平, 孙科, 王海波. 氢氧化钾对制备金红石型TiO2作用研究[J]. 钢铁钒钛, 2023,44(1):26-31.

    MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 26-31.
    [7]
    SHIBUYA T, YASUOKA K, MIRBT S, et al. Bipolaron formation induced by oxygen vacancy at rutile TiO2(110) surfaces[J]. Jphyschemc, 2012,118(18):9429-9435.
    [8]
    LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023,44(4):25-32. (路瑞芳, 杨芳, 刘婵, 等. Al3+对偏钛酸煅烧过程的影响和作用机制研究[J]. 钢铁钒钛, 2023,44(4):25-32.

    LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 25-32.
    [9]
    HAO Y Q, WANG Y F, WENG Y X. Particle-size-dependent hydrophilicity of TiO2 nanoparticles characterized by marcus reorganization energy of interfacial charge recombination[J]. The Journal of Physical Chemistry C, 2008,112(24):8995-9000. doi: 10.1021/jp802532w
    [10]
    TANG B W, NIU S, SUN C, et al. The superhydrophilicity and photocatalytic property of Zn-doped TiO2 thin films[J]. Ferroelectrics, 2019,549(1):96-103. doi: 10.1080/00150193.2019.1592548
    [11]
    Wu C Y, Tu K J, DENG J P, et al. Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis[J]. Materials, 2017,10(5):566. doi: 10.3390/ma10050566
    [12]
    HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019,47(4):93-94,121. (郝良鹏, 柴颂刚, 曾耀德, 等. 一种精确测定二氧化硅表面羟基数量的新方法[J]. 广州化工, 2019,47(4):93-94,121.

    HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019, 47(4): 93-94,121.
    [13]
    MUELLER R, KAMMLER H K, WEGNER K, et al. OH surface density of SiO2 and TiO2 by thermogravimetric analysis[J]. Langmuir, 2003,19(1):160-165. doi: 10.1021/la025785w
    [14]
    CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34. (陈鹰, 周莹, 厉艳君, 等. 高浓度纳米二氧化硅浆料Zeta电位的测量[J]. 理化检验(物理分册), 2020, 56(11): 19-24, 34.

    CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34.
    [15]
    GESENHUES U, RENTSCHLER T. Crystal growth and defect structure of Al3+-doped rutile[J]. International Journal of Quantum Chemistry, 1999,143(2):210-218.
    [16]
    LIU G, ZHANG X, XU Y, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities[J]. Chemosphere, 2005,59(9):1367-1371. doi: 10.1016/j.chemosphere.2004.11.072
    [17]
    DING Y, ZHANG X, CHEN L, et al. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO2 in the decomposition of high concentration ozone[J]. Journal of Solid State Chemistry France, 2017(250):121-127.
    [18]
    KIEJNA A. Vacancy formation and O adsorption at the Al(111) surface - art. no. 235405[J]. Physical review, B Condensed matter and materials physics, 2003,68(23):235405.
    [19]
    WANG S G, WEN X D, CAO D B, et al. Formation of oxygen vacancies on the TiO2(110) surfaces[J]. Surface Science, 2005,577(1):69-76. doi: 10.1016/j.susc.2004.12.017
    [20]
    MINATO T, KAWAI M, KIM Y. Creation of single oxygen vacancy on titanium dioxide surface[J]. Journal of Materials Research, 2012,27(17):2237-2240. doi: 10.1557/jmr.2012.157
    [21]
    MATSUNAGA K, TANAKA Y, TOYOURA K, et al. Existence of basal oxygen vacancies on the rutile TiO2(110) surface[J]. Physical Review B, 2014,90(19):195303. doi: 10.1103/PhysRevB.90.195303
    [22]
    VALENTIN C D, PACCHIONI G, SELLONI A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces[J]. Physical Review Letters, 2006,97(16):166803. doi: 10.1103/PhysRevLett.97.166803
    [23]
    ZHAO L, MAGYARI-KÖPE B, NISHI Y. Polaronic interactions between oxygen vacancies in rutile TiO2[J]. Physical Review B, 2017,95(5):54104. doi: 10.1103/PhysRevB.95.054104
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (65) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return