Citation: | SHANG Yuting, LIU Chan, LU Ruifang, YANG Fang, FENG Yujun, YIN Hongyao. Study on the effect of zinc or aluminium salt treatments on the surface properties of TiO2[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 34-39. doi: 10.7513/j.issn.1004-7638.2025.01.005 |
[1] |
LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023,44(2):34-39. (刘婵, 路瑞芳, 吴健春, 等. 煅烧过程中锌系与铝系钛白粒子演变规律的对比研究[J]. 钢铁钒钛, 2023,44(2):34-39.
LIU C, LU R F, WU J C, et al. Comparative study on the evolution law of zinc salt and aluminum salt treated titanium dioxide particles during calcination[J]. Iron Steel Vanadium Titanium, 2023, 44(2): 34-39.
|
[2] |
WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020,41(2):29-32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29-32.
WU J C, LU R F, MA W P. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 29-32.
|
[3] |
LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022,43(3):14-19. (路瑞芳, 孙蔷, 杨芳, 等. 铝锌复合盐处理对金红石型TiO2质量的影响研究[J]. 钢铁钒钛, 2022,43(3):14-19.
LU R F, SUN Q, YANG F, et al. Study on effect of Al-Zn composite salt treatment on the quality of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 14-19.
|
[4] |
CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021,42(4):44-47,62. (曹磊, 淦文军, 柯良辉, 等. Al掺杂对固相法制备TiO2晶体生长影响的研究[J]. 涂料技术与文摘, 2021,42(4):44-47,62.
CAO L, GAN W J, KE L H, et al. Effect of Al-doping solid phase method on growth of titanium dioxide crystal[J]. Coating and protection, 2021, 42(4): 44-47,62.
|
[5] |
RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016,48(7):21-24. (容尔益, 朱家文, 陈葵, 等. 煅烧晶种和磷、镁对二氧化钛晶体的影响[J]. 无机盐工业, 2016,48(7):21-24.
RONG E Y, ZHU J W, CHEN K, et al. Effects of calcining seed, phosphate, and magnesium on titanium dioxide crystal[J]. Inorganic Chemicals Industry, 2016, 48(7): 21-24.
|
[6] |
MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023,44(1):26-31. (马维平, 孙科, 王海波. 氢氧化钾对制备金红石型TiO2作用研究[J]. 钢铁钒钛, 2023,44(1):26-31.
MA W P, SUN K, WANG H B. Effect of potassium hydroxide on preparation of rutile TiO2[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 26-31.
|
[7] |
SHIBUYA T, YASUOKA K, MIRBT S, et al. Bipolaron formation induced by oxygen vacancy at rutile TiO2(110) surfaces[J]. Jphyschemc, 2012,118(18):9429-9435.
|
[8] |
LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023,44(4):25-32. (路瑞芳, 杨芳, 刘婵, 等. Al3+对偏钛酸煅烧过程的影响和作用机制研究[J]. 钢铁钒钛, 2023,44(4):25-32.
LU R F, YANG F, LIU C, et al. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 25-32.
|
[9] |
HAO Y Q, WANG Y F, WENG Y X. Particle-size-dependent hydrophilicity of TiO2 nanoparticles characterized by marcus reorganization energy of interfacial charge recombination[J]. The Journal of Physical Chemistry C, 2008,112(24):8995-9000. doi: 10.1021/jp802532w
|
[10] |
TANG B W, NIU S, SUN C, et al. The superhydrophilicity and photocatalytic property of Zn-doped TiO2 thin films[J]. Ferroelectrics, 2019,549(1):96-103. doi: 10.1080/00150193.2019.1592548
|
[11] |
Wu C Y, Tu K J, DENG J P, et al. Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis[J]. Materials, 2017,10(5):566. doi: 10.3390/ma10050566
|
[12] |
HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019,47(4):93-94,121. (郝良鹏, 柴颂刚, 曾耀德, 等. 一种精确测定二氧化硅表面羟基数量的新方法[J]. 广州化工, 2019,47(4):93-94,121.
HAO L P, CHAI S G, ZENG Y D, et al. A new method for accurate determination of OH groups density on silica surface[J]. Guangzhou Chemical Industry, 2019, 47(4): 93-94,121.
|
[13] |
MUELLER R, KAMMLER H K, WEGNER K, et al. OH surface density of SiO2 and TiO2 by thermogravimetric analysis[J]. Langmuir, 2003,19(1):160-165. doi: 10.1021/la025785w
|
[14] |
CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34. (陈鹰, 周莹, 厉艳君, 等. 高浓度纳米二氧化硅浆料Zeta电位的测量[J]. 理化检验(物理分册), 2020, 56(11): 19-24, 34.
CHEN Y, ZHOU Y, LI Y J, et al. Zeta Potential measurement of high concentration nano-silica slurry[J]. PTCA (PART A : PHYS. TEST), 2020, 56(11): 19-24, 34.
|
[15] |
GESENHUES U, RENTSCHLER T. Crystal growth and defect structure of Al3+-doped rutile[J]. International Journal of Quantum Chemistry, 1999,143(2):210-218.
|
[16] |
LIU G, ZHANG X, XU Y, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities[J]. Chemosphere, 2005,59(9):1367-1371. doi: 10.1016/j.chemosphere.2004.11.072
|
[17] |
DING Y, ZHANG X, CHEN L, et al. Oxygen vacancies enabled enhancement of catalytic property of Al reduced anatase TiO2 in the decomposition of high concentration ozone[J]. Journal of Solid State Chemistry France, 2017(250):121-127.
|
[18] |
KIEJNA A. Vacancy formation and O adsorption at the Al(111) surface - art. no. 235405[J]. Physical review, B Condensed matter and materials physics, 2003,68(23):235405.
|
[19] |
WANG S G, WEN X D, CAO D B, et al. Formation of oxygen vacancies on the TiO2(110) surfaces[J]. Surface Science, 2005,577(1):69-76. doi: 10.1016/j.susc.2004.12.017
|
[20] |
MINATO T, KAWAI M, KIM Y. Creation of single oxygen vacancy on titanium dioxide surface[J]. Journal of Materials Research, 2012,27(17):2237-2240. doi: 10.1557/jmr.2012.157
|
[21] |
MATSUNAGA K, TANAKA Y, TOYOURA K, et al. Existence of basal oxygen vacancies on the rutile TiO2(110) surface[J]. Physical Review B, 2014,90(19):195303. doi: 10.1103/PhysRevB.90.195303
|
[22] |
VALENTIN C D, PACCHIONI G, SELLONI A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces[J]. Physical Review Letters, 2006,97(16):166803. doi: 10.1103/PhysRevLett.97.166803
|
[23] |
ZHAO L, MAGYARI-KÖPE B, NISHI Y. Polaronic interactions between oxygen vacancies in rutile TiO2[J]. Physical Review B, 2017,95(5):54104. doi: 10.1103/PhysRevB.95.054104
|