Citation: | TAN Ling, XU Jinxiu, LI Daoyu, HUANG Senhong, WANG Xiaohui, HU Yijie, XIN Yanan. Preparation of high purity tetragonal barium titanate by microchannel synthesis method[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 81-85. doi: 10.7513/j.issn.1004-7638.2025.01.012 |
[1] |
ZHENG H Y, PU Y P, LI L P, et al. The extraction of vanadium from fired titanovanadium-bearing magnetite pellets with sodium sulphate addition[J]. Materials Reports, 2019,33(Z2):20−23. (郑晗煜, 蒲永平, 李来平, 等. 储能介电玻璃陶瓷的制备及研究进展[J]. 材料导报, 2019,33(Z2):20−23.
ZHENG H Y, PU Y P, LI L P, et al. The extraction of vanadium from fired titanovanadium-bearing magnetite pellets with sodium sulphate addition[J]. Materials Reports, 2019, 33(Z2): 20−23.
|
[2] |
ZHANG W Y. Research and application of electronic ceramics[J]. Ceramics, 2020,4:45−-51. (张文毓. 电子陶瓷的研究与应用[J]. 陶瓷, 2020,4:45−-51. doi: 10.3969/j.issn.1002-2872.2020.01.008
ZHANG W Y. Research and application of electronic ceramics[J]. Ceramics, 2020, 4: 45−-51. doi: 10.3969/j.issn.1002-2872.2020.01.008
|
[3] |
ZHANNG G Z, ZHAO Y Y, XU J W, et al. Research progress of lead-free ferroelectric ceramics for energy storage[J]. Advanced Ceramics, 2018,39(4):247−265. (张光祖, 赵阳阳, 许积文, 等. 储能用无铅铁电陶瓷介质材料研究进展[J]. 现代技术陶瓷, 2018,39(4):247−265.
ZHANNG G Z, ZHAO Y Y, XU J W, et al. Research progress of lead-free ferroelectric ceramics for energy storage[J]. Advanced Ceramics, 2018, 39(4): 247−265.
|
[4] |
AI T T. Research progress in titanate functional ceramics[J]. Ceramics, 2011,02:42−45. (艾桃桃. 钛酸盐功能陶瓷的研究进展[J]. 陶瓷, 2011,02:42−45. doi: 10.3969/j.issn.1002-2872.2011.02.008
AI T T. Research progress in titanate functional ceramics[J]. Ceramics, 2011, 02: 42−45. doi: 10.3969/j.issn.1002-2872.2011.02.008
|
[5] |
YAN Y B. Study on doping modification and properties of nano-BaTiO3 powders synthesized by microwave hydrothermal method[J]. Functional Materials, 2019,12(50):12157−12161. (闫玉兵. 微波水热法合成纳米BaTiO3粉体的掺杂改性与性能研究[J]. 功能材料, 2019,12(50):12157−12161.
YAN Y B. Study on doping modification and properties of nano-BaTiO3 powders synthesized by microwave hydrothermal method[J]. Functional Materials, 2019, 12(50): 12157−12161.
|
[6] |
ZHAO Y L, CAI J, WEI K, et al. Further study of preparation of nanosized BaTiO3 by way of coprecipitation[J]. Fine Chemicals, 2008,25(9):846−857. (赵玉玲, 蔡军, 魏坤, 等. 共沉淀法制备纳米钛酸钡的进一步研究[J]. 精细化工, 2008,25(9):846−857. doi: 10.3321/j.issn:1003-5214.2008.09.004
ZHAO Y L, CAI J, WEI K, et al. Further study of preparation of nanosized BaTiO3 by way of coprecipitation[J]. Fine Chemicals, 2008, 25(9): 846−857. doi: 10.3321/j.issn:1003-5214.2008.09.004
|
[7] |
CHEN Y Y, ZHANG Y, WANG X Y. Research on preparation of nanosized barium titanate by chemical precipitation[J]. Acta Chemica Sinica, 2010,68(23):2409−2413. (陈妍妍, 张云, 王晓燕. 化学沉淀法制备BaTiO3纳米粉体的研究[J]. 化学学报, 2010,68(23):2409−2413.
CHEN Y Y, ZHANG Y, WANG X Y. Research on preparation of nanosized barium titanate by chemical precipitation[J]. Acta Chemica Sinica, 2010, 68(23): 2409−2413.
|
[8] |
SRIMALA S, AHMAD F M N, ZAINAL A A, et al. Structural and electrical characteristic of crystalline barium titanate synthesized by low temperature aqueous method[J]. Journal of Materials Processing Technology, 2008,195:171−177. doi: 10.1016/j.jmatprotec.2007.04.120
|
[9] |
CHEN K Y, CHEN Y W. Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion[J]. Powder Technology, 2004,141:69−74. doi: 10.1016/j.powtec.2004.03.002
|
[10] |
LIU C Y, LIU Y Q, AN C H, et al. Preparation of ultrafine titanates powder by hydrothermal method[J]. Bulletin of the Chinese Ceramic Society, 2011,30(3):620−624. (刘春英, 柳云骐, 安长华, 等. 水热法合成钛酸盐(MTiO3)超细粉体[J]. 硅酸盐通报, 2011,30(3):620−624.
LIU C Y, LIU Y Q, AN C H, et al. Preparation of ultrafine titanates powder by hydrothermal method[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(3): 620−624.
|
[11] |
ZHOU J, LI L T, XIONG X Y. Strategic thinking on the development of electronic ceramic technology in China[J]. Engineering Sciences, 2020,22(5):20−27. (周济, 李龙土, 熊小雨. 我国电子陶瓷技术发展的战略思考[J]. 中国工程科学, 2020,22(5):20−27.
ZHOU J, LI L T, XIONG X Y. Strategic thinking on the development of electronic ceramic technology in China[J]. Engineering Sciences, 2020, 22(5): 20−27.
|
[12] |
SUN R R, GUO G L. Preparation, oping and dielectric properties of nanomter-sized barium titanate powder[J]. Guangzhou Chemistry, 2020,45(5):41−44. (孙瑞瑞, 郭广磊. 纳米BaTiO3的制备、掺杂及介电性能研究[J]. 广州化学, 2020,45(5):41−44.
SUN R R, GUO G L. Preparation, oping and dielectric properties of nanomter-sized barium titanate powder[J]. Guangzhou Chemistry, 2020, 45(5): 41−44.
|
[13] |
ZHANG B D, ZHAI J Y, JIN H B, et al. Preparation of spherical BaTiO3 particles using microchannel continuous method and its application in medical test dry film[J]. CIESC Journal, 2020,71(3):1370−1379 (张宝丹, 翟佳羽, 靳海波, 等. 微通道连续沉淀法制备球形BaTiO3颗粒及其在医学检测干片上的应用[J]. 化工学报, 2020,71(3):1370−1379.
ZHANG B D, ZHAI J Y, JIN H B, et al. Preparation of spherical BaTiO3 particles using microchannel continuous method and its application in medical test dry film[J]. CIESC Journal, 2020, 71(3): 1370−1379
|
[14] |
ULISES A S, ROMAIN B, THOMAS G, et al. Nanostructured tetragonal barium titanate produced by the polyol and spark plasma sintering (SPS) route[J]. Applied Physics A, 2017,123:659. doi: 10.1007/s00339-017-1267-9
|
[15] |
SARIR U, ZHENG G P, ASIF K, et al. Temperature dependent energy storage characterization of Pb-free relaxor ferroelectrics[J]. Journal of Advanced Dielectrics, 2020,10(3):2050009. doi: 10.1142/S2010135X20500095
|