Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
TU Minjie. Study on the preparation and properties of high titanium slag aggregate concrete using magnetized water[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 94-99. doi: 10.7513/j.issn.1004-7638.2025.01.014
Citation: TU Minjie. Study on the preparation and properties of high titanium slag aggregate concrete using magnetized water[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 94-99. doi: 10.7513/j.issn.1004-7638.2025.01.014

Study on the preparation and properties of high titanium slag aggregate concrete using magnetized water

doi: 10.7513/j.issn.1004-7638.2025.01.014
  • Received Date: 2024-08-13
  • Publish Date: 2025-02-27
  • To improve the workability and mechanical properties of high titanium slag aggregate concrete, this paper proposed the use of magnetized water for its preparation. The study investigated the effects of different flow rates of magnetized water on the workability and mechanical properties of high titanium slag aggregate concrete, and conducted tests and analyses on its micro morphology and pore structure. The results show that magnetized water enhances the workability and strength of high titanium slag aggregate concrete and increases its air content. However, as the flow rate of magnetized water increases, the improvement effect diminishes. When the water flow rate is 40 mL/s, the slump, spread, 28 d compressive strength, and 60 d compressive strength are respectively increased by 9.5%, 14.9%, 8.9%, and 11.6% compared with tap water high titanium slag aggregate concrete. The microstructural test results indicate that the cracks between the aggregate and cement matrix of the magnetized water high titanium slag aggregate concrete are smaller, with more hydration products and fewer unhydrated cement and mineral admixtures, resulting in a higher degree of reaction. The "pinning effect" between the high titanium slag aggregate and the cement matrix is further enhanced. Additionally, the proportion of harmless pores is higher, and the proportion of harmful pores is lower, making the structure denser and thus stronger.
  • loading
  • [1]
    YANG Z, LI B X, ZHANG Z B, et al. Research progress on application of high titanium slag in cement and concrete[J]. Materials Reports, 1-18. (杨尊, 李碧雄, 张治博, 等. 高钛矿渣用于水泥混凝土的研究应用进展[J]. 材料导报, 1-18.

    YANG Z, LI B X, ZHANG Z B, et al. Research progress on application of high titanium slag in cement and concrete[J]. Materials Reports, 1-18.
    [2]
    LI X Y. Study on properties and paste-aggregate interaction mechanism of high performance concrete with high titanium slag as aggregate[D]. Mianyang: Southwest University of Science and Technology, 2021. (李晓英. 高钛矿渣高性能混凝土性能及其浆-骨界面作用机制研究[D]. 绵阳:西南科技大学, 2021.

    LI X Y. Study on properties and paste-aggregate interaction mechanism of high performance concrete with high titanium slag as aggregate[D]. Mianyang: Southwest University of Science and Technology, 2021.
    [3]
    LI J, YU Z, XU F, et al. The evolution mechanism of anti-abrasive UHPC microstructure under impact and erosion[J]. Construction and Building Materials, 2024,411:134282. doi: 10.1016/j.conbuildmat.2023.134282
    [4]
    WANG W, LI X, SHEN J, et al. Feasibility of high titanium heavy slag used as aggregates for asphalt mixtures[J]. Journal of Cleaner Production, 2023,411:137332. doi: 10.1016/j.jclepro.2023.137332
    [5]
    DING Q J, MOU T M, LIU X Q, et al. Preparation and application of self-compacting concrete by high titanium heavy slag[J]. Construction Technology, 2015,44(3):57-60, 69. (丁庆军, 牟廷敏, 刘小清, 等. C30高钛重矿渣自密实混凝土研究与应用[J]. 施工技术, 2015,44(3):57-60, 69.

    DING Q J, MOU T M, LIU X Q, et al. Preparation and application of self-compacting concrete by high titanium heavy slag[J]. Construction Technology, 2015, 44(3): 57-60, 69.
    [6]
    JIANG H M, MOU T M, DING Q J. Research on the working performance of high titanium heavy slag concrete[J]. Concrete, 2011(5):125-127. (江海民, 牟廷敏, 丁庆军. 高钛重矿渣混凝土的工作性能研究[J]. 混凝土, 2011(5):125-127.

    JIANG H M, MOU T M, DING Q J. Research on the working performance of high titanium heavy slag concrete[J]. Concrete, 2011(5): 125-127.
    [7]
    RONG X, LI J J, DAN H B, et al. Characteristics, mechanism and applications of magnetized water: a review[J]. Materials Reports, 2022,36(9):65-71. (戎鑫, 李建军, 但宏兵, 等. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022,36(9):65-71.

    RONG X, LI J J, DAN H B, et al. Characteristics, mechanism and applications of magnetized water: a review[J]. Materials Reports, 2022, 36(9): 65-71.
    [8]
    LI Y G, YI S G, ZHANG L B, et al. Recent and prospective research on magnetized water-based concrete[J]. Journal of Materials Science and Engineering, 2019,37(2):331-338. (李月光, 伊书国, 张霖波, 等. 磁化水水泥混凝土研究现状与发展前景[J]. 材料科学与工程学报, 2019,37(2):331-338.

    LI Y G, YI S G, ZHANG L B, et al. Recent and prospective research on magnetized water-based concrete[J]. Journal of Materials Science and Engineering, 2019, 37(2): 331-338.
    [9]
    KESHTAA M M, ELSHIKH M M Y, KALOOP M R, et al. Effect of magnetized water on characteristics of sustainable concrete using volcanic ash[J]. Construction and Building Materials, 2022, 361: 129640.
    [10]
    AHMED S M, MANAR D F. Effect of static magnetic field treatment on fresh concrete and water reduction potential[J]. Case Studies in Construction Materials, 2021,14:e00535. doi: 10.1016/j.cscm.2021.e00535
    [11]
    ZHENG B, LI S K, LI Y L, et al. Effect of magnetized water on mechanical properties and durability of marine concrete[J]. Bulletin of The Chinese Ceramic Society, 2024,43(6):2039-2046. (郑彪, 李顺凯, 李育林, 等. 磁化水对海工混凝土力学性能和耐久性能的影响[J]. 硅酸盐通报, 2024,43(6):2039-2046.

    ZHENG B, LI S K, LI Y L, et al. Effect of magnetized water on mechanical properties and durability of marine concrete[J]. Bulletin of The Chinese Ceramic Society, 2024, 43(6): 2039-2046.
    [12]
    CONG Y, ZHANG P, WU J W, et al. Effect of magnetic field activated water on properties of cement mixture[J]. Bulletin of The Chinese Ceramic Society, 2017,36(12):4217-4223. (丛瑗, 张鹏, 吴建伟, 等. 磁场活化水对水泥拌合物性能的影响[J]. 硅酸盐通报, 2017,36(12):4217-4223.

    CONG Y, ZHANG P, WU J W, et al. Effect of magnetic field activated water on properties of cement mixture[J]. Bulletin of The Chinese Ceramic Society, 2017, 36(12): 4217-4223.
    [13]
    GHOLHAKI M, HAJFOROUSH M, KAZEMI M. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials[J]. Construction and Building Materials, 2018,158:173-180. doi: 10.1016/j.conbuildmat.2017.09.135
    [14]
    DING Y H, CHEN B, WU J, et al. Early strength study on recycled aggregate concrete of magnetized water steel fiber[J]. Bulletin of The Chinese Ceramic Society, 2021,40(4):1178-1185+1204. (丁亚红, 陈冰, 武军, 等. 磁化水钢纤维再生混凝土早期强度研究[J]. 硅酸盐通报, 2021,40(4):1178-1185+1204.

    DING Y H, CHEN B, WU J, et al. Early strength study on recycled aggregate concrete of magnetized water steel fiber[J]. Bulletin of The Chinese Ceramic Society, 2021, 40(4): 1178-1185+1204.
    [15]
    ZHAO G, ZHANG Z, MA N, et al. Preparation and characterization of cement mortar mixed with alternating field-magnetized water[J]. Construction and Building Materials, 2024,416:135204. doi: 10.1016/j.conbuildmat.2024.135204
    [16]
    MOHAMMADNEZHAD A, AZIZI S, FARAHANI H S, et al. Understanding the magnetizing process of water and its effects on cementitious materials: A critical review[J]. Construction and Building Materials, 2022,356:129076. doi: 10.1016/j.conbuildmat.2022.129076
    [17]
    NARMATHA M, ARULRAJ P, BARI J A. Effect of magnetic water treatment for mixing and curing on structural concrete[J]. Materials Today: Proceedings, 2021,37:671-676. doi: 10.1016/j.matpr.2020.05.633
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(9)

    Article Metrics

    Article views (50) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return