Citation: | ZHAO Yumin, SHI Qi, LIU Binbin, TAN Chong, LIU Xin, ZHOU Ge, DING Zhongyao, QIN Feng. Research progress of preparation of refractory high entropy alloy powder[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 141-151. doi: 10.7513/j.issn.1004-7638.2025.01.020 |
[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004(5):5.
|
[2] |
JI C W, MA A B, JIANG J H. Research status and development trend of light weight high entropy alloys[J]. Materials Review, 2020,34(19):19094-19100. (季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020,34(19):19094-19100. doi: 10.11896/cldb.19070273
JI C W, MA A B, JIANG J H. Research status and development trend of light weight high entropy alloys[J]. Materials Review, 2020, 34(19): 19094-19100. doi: 10.11896/cldb.19070273
|
[3] |
YEH J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006,31(6):633-648.
|
[4] |
MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, Oxford: Pergamon-Elsevier Science Ltd, 2017,122:448-511.
|
[5] |
CHEN J, ZHOU X, WANG W, et al. A review on fundamental of high entropy alloys with promising high–temperature properties[J]. Journal of Alloys and Compounds, 2018,760:15-30. doi: 10.1016/j.jallcom.2018.05.067
|
[6] |
SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys-A review[J]. Journal of Materials Research, Heidelberg: Springer Heidelberg, 2018,33(19):3092-3128.
|
[7] |
ZHANG Y, LU Z P, MA S G, et al. Guidelines in predicting phase formation of high-entropy alloys[J]. MRS Communications, 2014,4(2):57-62. doi: 10.1557/mrc.2014.11
|
[8] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014,61:1-93. doi: 10.1016/j.pmatsci.2013.10.001
|
[9] |
YANG X, CHEN S Y, COTTON J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. Jom, New York: Springer, 2014,66(10):2009-2020.
|
[10] |
KANG B, LEE J, RYU H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Lausanne: Elsevier Science Sa, 2018, 712: 616–624.
|
[11] |
ZHANG Y, ZHOU Y J, LIN J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008,10(6):534-538. doi: 10.1002/adem.200700240
|
[12] |
YE Y F, WANG Q, LU J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016,19(6):349-362. doi: 10.1016/j.mattod.2015.11.026
|
[13] |
GUO S, NG C, LU J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011,109(10):103505. doi: 10.1063/1.3587228
|
[14] |
TONG C J, CHEN Y L, YEH J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005,36(4):881-893. doi: 10.1007/s11661-005-0283-0
|
[15] |
JI G Y. Composition design, structural stability and mechanical properties of Ti(65-x)Ta(25)Nb(10)Zrx multi-component refractory alloys[D]. Yantai: Yantai University, 2022(in Chinese). (姬广运. Ti(65-x)Ta(25)Nb(10)Zrx多组元难熔合金的成分设计、结构稳定性和力学性能研究[D]. 烟台: 烟台大学, 2022.
JI G Y. Composition design, structural stability and mechanical properties of Ti(65-x)Ta(25)Nb(10)Zrx multi-component refractory alloys[D]. Yantai: Yantai University, 2022(in Chinese).
|
[16] |
WU M, WANG S, HUANG H, et al. CALPHAD aided eutectic high-entropy alloy design[J]. Materials Letters, 2020,262:127175. doi: 10.1016/j.matlet.2019.127175
|
[17] |
RATURI A, ADITYA C J, GURAO N P, et al. ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys[J]. Journal of Alloys and Compounds, 2019,806:587-595. doi: 10.1016/j.jallcom.2019.06.387
|
[18] |
HAMED N, KIANI R A, JALIL V. Design of a low density refractory high entropy alloy in non-equiatomic W–Mo–Cr–Ti–Al system[J]. Vacuum, 2020,181:109614. doi: 10.1016/j.vacuum.2020.109614
|
[19] |
CAO Y, LIU Y, LIU B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019,29(7):1476-1483. doi: 10.1016/S1003-6326(19)65054-5
|
[20] |
SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010,18(9):1758-1765. doi: 10.1016/j.intermet.2010.05.014
|
[21] |
WANG Z, WU H, WU Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering[J]. Materials Today, 2022,54:83-89. doi: 10.1016/j.mattod.2022.02.006
|
[22] |
PAN J Y. Study on preparation and properties of NbMoTaWX Series high entropy alloy[D]. Nanjing: Southeast University, 2019. (潘家怡. NbMoTaWX系高熵合金的制备与性能研究[D]. 南京: 东南大学, 2019.
PAN J Y. Study on preparation and properties of NbMoTaWX Series high entropy alloy[D]. Nanjing: Southeast University, 2019.
|
[23] |
QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019,48(8):2623-2629. (漆陪部, 梁秀兵, 仝永刚, 等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响[J]. 稀有金属材料与工程, 2019,48(8):2623-2629.
QI P B, LIANG X B, TONG Y G, et al. Effect of milling time on mechanical alloying of NbMoTaW high entropy alloy powder[J]. Rare Metal Materials and Engineering, 2019, 48(8): 2623-2629.
|
[24] |
LIU C, CHEN J N, DING W W, et al. Preparation and properties of near-spherical WMoTaTi refractory high entropy alloy powder[J]. Powder Metallurgy Technology, 2021,39(5):403-409. (刘畅, 陈佳男, 丁旺旺, 等. 近球形WMoTaTi难熔高熵合金粉末的制备及性能[J]. 粉末冶金技术, 2021,39(5):403-409.
LIU C, CHEN J N, DING W W, et al. Preparation and properties of near-spherical WMoTaTi refractory high entropy alloy powder[J]. Powder Metallurgy Technology, 2021, 39(5): 403-409.
|
[25] |
Ministry of Industry and Information Technology of the People's Republic of China. YS/T 1297—2019 Measuring method for sphericity ratio of titanium and titanium alloy powders. Beijing: Metallurgical Industry Press, 2019. (中华人民共和国工业和信息化部. YS/T 1297—2019钛及钛合金粉末球形率的测定方法. 北京: 冶金工业出版社, 2019.
Ministry of Industry and Information Technology of the People's Republic of China. YS/T 1297—2019 Measuring method for sphericity ratio of titanium and titanium alloy powders. Beijing: Metallurgical Industry Press, 2019.
|
[26] |
TANG J, NIE Y, LEI Q, et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process[J]. Advanced Powder Technology, Amsterdam: Elsevier, 2019,30(10):2330-2337. doi: 10.1016/j.apt.2019.07.015
|
[27] |
GAO S, FU A, XIE Z, et al. Preparation and microstructure of high-activity spherical TaNbTiZr refractory high-entropy alloy powders[J]. Materials, 2023,16(2):791. doi: 10.3390/ma16020791
|
[28] |
LI J. Preparation of low-oxygen spherical Ti-6Al-4V powder by radio-frequency plasma-calcium reduction and its properties[D]. Zhengzhou: Zhengzhou University, 2021. (李静. 射频等离子体-钙还原制备低氧球形Ti-6Al-4V粉末及其性能研究[D]. 郑州: 郑州大学, 2021.
LI J. Preparation of low-oxygen spherical Ti-6Al-4V powder by radio-frequency plasma-calcium reduction and its properties[D]. Zhengzhou: Zhengzhou University, 2021.
|
[29] |
LIU B, DUAN H, LI L, et al. Microstructure and mechanical properties of ultra-hard spherical refractory high-entropy alloy powders fabricated by plasma spheroidization[J]. Powder Technology, 2021,382:550-555. doi: 10.1016/j.powtec.2021.01.021
|
[30] |
Na T W, Park K B, Lee S Y, et al. Preparation of spherical TaNbHfZrTi high-entropy alloy powders by a hydrogenation–dehydrogenation reaction and thermal plasma treatment[J]. Journal of Alloys and Compounds, 2020, 817: 152757.
|
[31] |
XIA M, CHEN Y, CHEN K, et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing[J]. Journal of Alloys and Compounds, 2022, 917: 165501.
|
[32] |
HAN J S. Study on preparation, microstructure and surface oxidation protection of MoNbTaW refractory high entropy alloy by discharge plasma sintering[D]. Lanzhou: Lanzhou University of Technology, 2022. (韩杰胜. MoNbTaW系难熔高熵合金的放电等离子烧结制备、微观组织及其表面抗氧化防护研究[D]. 兰州: 兰州理工大学, 2022.
HAN J S. Study on preparation, microstructure and surface oxidation protection of MoNbTaW refractory high entropy alloy by discharge plasma sintering[D]. Lanzhou: Lanzhou University of Technology, 2022.
|
[33] |
HAN Z D, LUAN H W, LIU X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys[J]. Materials Science and Engineering: A, 2018, 712: 380–385.
|
[34] |
QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020. (乔娅婷. 粉末冶金法制备难熔高熵合金的工艺及性能研究[D]. 长沙: 国防科技大学, 2020.
QIAO Y T. Study on process and properties of refractory high entropy alloy prepared by powder metallurgy[D]. Changsha: National University of Defense Technology, 2020.
|
[35] |
ZHAO B, CHEN G, LIN Q, et al. Thermal deformation characteristics of AlMo0.8NbTiW0.2Zr refractory multi-principal element alloy[J]. Intermetallics, Oxford: Elsevier Sci Ltd, 2022, 144: 107524.
|
[36] |
BEAUSOLEIL I G L, PARRY M E, MONDAL K, et al. Spark plasma sintered, MoNbTi-based multi-principal element alloys with Cr, V, and Zr[J]. Journal of Alloys and Compounds, Lausanne: Elsevier Science Sa, 2022,927:167083.
|
[37] |
LI Q Y, LI D C, ZHANG H, et al. Study on microstructure and strength of NbMoTaTi refractory high entropy alloy formed by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61-67. (李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61–67.
LI Q Y, LI D C, ZHANG H, et al. Study on microstructure and strength of NbMoTaTi refractory high entropy alloy formed by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61-67.
|
[38] |
ZHAO Y, WU M, JIANG P, et al. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process[J]. Journal of Materials Research and Technology, 2022,20:1908-1911. doi: 10.1016/j.jmrt.2022.07.185
|
[39] |
DOBBELSTEIN H, THIELE M, GUREVICH E L, et al. Direct metal deposition of refractory high entropy alloy MoNbTaW[J]. Physics Procedia, 2016,83:624-633. doi: 10.1016/j.phpro.2016.08.065
|
[40] |
ZHANG H, ZHAO Y, HUANG S, et al. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM)[J]. Materials, Basel: Mdpi, 2019,12(5):720.
|
[41] |
DOBBELSTEIN H, GUREVICH E L, GEORGE E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 2019,25:252-262. doi: 10.1016/j.addma.2018.10.042
|
[42] |
GU P F, QI T B, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022,105:105834. doi: 10.1016/j.ijrmhm.2022.105834
|