Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
LI Jing, ZHOU Yang, JIANG Shichuan. Research on the control of inclusions in the vacuum induction melting process of GH4169[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 152-157. doi: 10.7513/j.issn.1004-7638.2025.01.021
Citation: LI Jing, ZHOU Yang, JIANG Shichuan. Research on the control of inclusions in the vacuum induction melting process of GH4169[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 152-157. doi: 10.7513/j.issn.1004-7638.2025.01.021

Research on the control of inclusions in the vacuum induction melting process of GH4169

doi: 10.7513/j.issn.1004-7638.2025.01.021
  • Received Date: 2024-01-08
  • Publish Date: 2025-02-27
  • Inclusions in superalloys are the main factors affecting the metallurgical quality and performance of the alloys. The control methods of inclusions in the vacuum induction melting process of GH4169 had been investigated from two aspects: melting process and raw material. Firstly, three batches of GH4169 were melted in a 12-ton vacuum induction furnace with highly consistent charging but different refining temperature at 1530, 1560℃, and 1590℃. The results showed that as the refining temperature increased, the erosion-reduction reaction between the alloy melt and the MgO crucible became more intense, introducing non-metallic inclusions such as Al2O3 and MgAl2O4 into the alloy melt. The number density of non-metallic inclusions at the A-end of the induction ingot increased progressively, which were 83.716, 171.180/mm2, and 204.927/mm2, respectively. Therefore, low-temperature refining should be chosen to reduce inclusion content by more than 50%, with refining temperature at around 1525~1535℃, refining vacuum degree ≤ 1.0 Pa, and duration of 1.5~2.5 h. Secondly, low-temperature refining was selected to reduce the impact of refining process on inclusions, and the impact of raw material purity on inclusions was compared. The results showed that using higher purity raw materials such as Cr, Nb and Ti for melting can reduce inclusion content in the induction ingot by more than 30%.
  • loading
  • [1]
    KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020,41(4):304-311. (孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020,41(4):304-311.

    KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020, 41(4): 304-311.
    [2]
    WANG N, GAO J G, YANG S L, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021,31(12):20-26. (王宁, 高锦国, 杨曙磊等. 真空感应熔炼中夹杂物运动机制数值模拟[J]. 中国冶金, 2021,31(12):20-26.

    WANG N, GAO J G, YANG S L, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021, 31(12): 20-26.
    [3]
    GAO X Y. Research on purification technology for the master ally of FGH96 powder super alloy[D]. Beijing: University of Science and Technology Beijing, 2020. (高小勇. FGH96粉末高温合金母合金的纯净化技术研究[D]. 北京:北京科技大学, 2020.

    GAO X Y. Research on purification technology for the master ally of FGH96 powder super alloy[D]. Beijing: University of Science and Technology Beijing, 2020.
    [4]
    LI X, ZHANG M C, ZHANG L N, et al. Effect of inclusion on mechanical properties of powder metallurgical super alloy[J]. Special Steel, 2001(1):25-28. (李晓, 张麦仓, 张丽娜, 等. 夹杂物对粉末冶金高温合金力学性能的影响[J]. 特殊钢, 2001(1):25-28. doi: 10.3969/j.issn.1003-8620.2001.01.008

    LI X, ZHANG M C, ZHANG L N, et al. Effect of inclusion on mechanical properties of powder metallurgical super alloy[J]. Special Steel, 2001(1): 25-28. doi: 10.3969/j.issn.1003-8620.2001.01.008
    [5]
    LI J, JIANG S C, QI H L, et al. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. Iron Steel Vanadium Titanium, 2023,44(3):159-164. (李靖, 蒋世川, 戚慧琳, 等. GH4169真空感应过程夹杂物的演变机制[J]. 钢铁钒钛, 2023,44(3):159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024

    LI J, JIANG S C, QI H L, et al. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024
    [6]
    ZHENG J, YOU X G, TAN Y, et al. Removal of TiO2 and TiN inclusions in Ti3Ni alloy[J]. Materials for Mechanical Engineering, 2021,45(8):25-31. (郑俊, 游小刚, 谭毅, 等. Ti_3Ni合金中TiO2和TiN夹杂物的去除[J]. 机械工程材料, 2021,45(8):25-31.

    ZHENG J, YOU X G, TAN Y, et al. Removal of TiO2 and TiN inclusions in Ti3Ni alloy[J]. Materials for Mechanical Engineering, 2021, 45(8): 25-31.
    [7]
    WANG L, GAO Y L, LI M, et al. Effect of current intensity on metallurgical quality of electroslag remelting GH4169 alloy[J]. Ordnance Material Science and Engineering, 2023,46(3):87-92. (王林, 高永亮, 李猛, 等. 电流强度对电渣重熔GH4169合金冶金质量的影响[J]. 兵器材料科学与工程, 2023,46(3):87-92.

    WANG L, GAO Y L, LI M, et al. Effect of current intensity on metallurgical quality of electroslag remelting GH4169 alloy[J]. Ordnance Material Science and Engineering, 2023, 46(3): 87-92.
    [8]
    WANG D, YANG S F, QU J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021,56(2):155-161. (王迪, 杨树峰, 曲敬龙, 等. GH4169电渣重熔铸锭表层夹杂物分布规律[J]. 钢铁, 2021,56(2):155-161.

    WANG D, YANG S F, QU J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021, 56(2): 155-161.
    [9]
    WANG H. Modeling and experiment study on the magnetically controlled electroslag remelting process[D]. Shanghai: Shanghai University, 2018. (王怀. 磁控电渣重熔过程的模拟及实验研究[D]. 上海:上海大学, 2018.

    WANG H. Modeling and experiment study on the magnetically controlled electroslag remelting process[D]. Shanghai: Shanghai University, 2018.
    [10]
    WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017,46(3):777-782(in Chinese). (魏文庆, 刘炳强, 姜军生, 等. 热处理对Nb-35Ti-4C合金微观组织和力学机制的影响[J]. 稀有金属材料与工程, 2017,46(3):777-782.

    WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3): 777-782(in Chinese).
    [11]
    GUI M X, XU Q B. Mechanism of MgO thermal reduction reaction[J]. Foreign Refractories, 2006,31(5):45-50. (桂明玺, 徐庆斌. MgO的Al热还原反应的机理[J]. 国外耐火材料, 2006,31(5):45-50.

    GUI M X, XU Q B. Mechanism of MgO thermal reduction reaction[J]. Foreign Refractories, 2006, 31(5): 45-50.
    [12]
    JIANG W G, GUO W J, DONG L, et al. Interfacial reaction mechanism between alumina crucible and nickle-based super alloy[J]. Special Casting & Nonferrous Alloys, 2023,43(3):308-313. (姜卫国, 郭万军, 董琳, 等. 氧化铝坩埚与高温合金的界面反应机制[J]. 特种铸造及有色合金, 2023,43(3):308-313.

    JIANG W G, GUO W J, DONG L, et al. Interfacial reaction mechanism between alumina crucible and nickle-based super alloy[J]. Special Casting & Nonferrous Alloys, 2023, 43(3): 308-313.
    [13]
    XUE H, GAO J G, ZHAO P, et al. Effect of addition ratio of returned materials on precipitation behavior of inclusions in superalloy[J/OL]. China Metallurgy, 1-12. (薛辉, 高锦国, 赵朋, 等. 返回料添加比例对高温合金夹杂物析出行为的影响[J/OL]. 中国冶金, 1-12.

    XUE H, GAO J G, ZHAO P, et al. Effect of addition ratio of returned materials on precipitation behavior of inclusions in superalloy[J/OL]. China Metallurgy, 1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (53) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return