Citation: | LI Jing, ZHOU Yang, JIANG Shichuan. Research on the control of inclusions in the vacuum induction melting process of GH4169[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 152-157. doi: 10.7513/j.issn.1004-7638.2025.01.021 |
[1] |
KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020,41(4):304-311. (孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020,41(4):304-311.
KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion GH4169 nickel based superalloy[J]. Acta Astronautica Sinica, 2020, 41(4): 304-311.
|
[2] |
WANG N, GAO J G, YANG S L, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021,31(12):20-26. (王宁, 高锦国, 杨曙磊等. 真空感应熔炼中夹杂物运动机制数值模拟[J]. 中国冶金, 2021,31(12):20-26.
WANG N, GAO J G, YANG S L, et al. Numerical simulation of inclusions movement in vacuum induction melting[J]. China Metallurgy, 2021, 31(12): 20-26.
|
[3] |
GAO X Y. Research on purification technology for the master ally of FGH96 powder super alloy[D]. Beijing: University of Science and Technology Beijing, 2020. (高小勇. FGH96粉末高温合金母合金的纯净化技术研究[D]. 北京:北京科技大学, 2020.
GAO X Y. Research on purification technology for the master ally of FGH96 powder super alloy[D]. Beijing: University of Science and Technology Beijing, 2020.
|
[4] |
LI X, ZHANG M C, ZHANG L N, et al. Effect of inclusion on mechanical properties of powder metallurgical super alloy[J]. Special Steel, 2001(1):25-28. (李晓, 张麦仓, 张丽娜, 等. 夹杂物对粉末冶金高温合金力学性能的影响[J]. 特殊钢, 2001(1):25-28. doi: 10.3969/j.issn.1003-8620.2001.01.008
LI X, ZHANG M C, ZHANG L N, et al. Effect of inclusion on mechanical properties of powder metallurgical super alloy[J]. Special Steel, 2001(1): 25-28. doi: 10.3969/j.issn.1003-8620.2001.01.008
|
[5] |
LI J, JIANG S C, QI H L, et al. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. Iron Steel Vanadium Titanium, 2023,44(3):159-164. (李靖, 蒋世川, 戚慧琳, 等. GH4169真空感应过程夹杂物的演变机制[J]. 钢铁钒钛, 2023,44(3):159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024
LI J, JIANG S C, QI H L, et al. Evolution mechanism of inclusions in GH4169 produced by vacuum induction melting[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 159-164. doi: 10.7513/j.issn.1004-7638.2023.03.024
|
[6] |
ZHENG J, YOU X G, TAN Y, et al. Removal of TiO2 and TiN inclusions in Ti3Ni alloy[J]. Materials for Mechanical Engineering, 2021,45(8):25-31. (郑俊, 游小刚, 谭毅, 等. Ti_3Ni合金中TiO2和TiN夹杂物的去除[J]. 机械工程材料, 2021,45(8):25-31.
ZHENG J, YOU X G, TAN Y, et al. Removal of TiO2 and TiN inclusions in Ti3Ni alloy[J]. Materials for Mechanical Engineering, 2021, 45(8): 25-31.
|
[7] |
WANG L, GAO Y L, LI M, et al. Effect of current intensity on metallurgical quality of electroslag remelting GH4169 alloy[J]. Ordnance Material Science and Engineering, 2023,46(3):87-92. (王林, 高永亮, 李猛, 等. 电流强度对电渣重熔GH4169合金冶金质量的影响[J]. 兵器材料科学与工程, 2023,46(3):87-92.
WANG L, GAO Y L, LI M, et al. Effect of current intensity on metallurgical quality of electroslag remelting GH4169 alloy[J]. Ordnance Material Science and Engineering, 2023, 46(3): 87-92.
|
[8] |
WANG D, YANG S F, QU J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021,56(2):155-161. (王迪, 杨树峰, 曲敬龙, 等. GH4169电渣重熔铸锭表层夹杂物分布规律[J]. 钢铁, 2021,56(2):155-161.
WANG D, YANG S F, QU J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot[J]. Iron and Steel, 2021, 56(2): 155-161.
|
[9] |
WANG H. Modeling and experiment study on the magnetically controlled electroslag remelting process[D]. Shanghai: Shanghai University, 2018. (王怀. 磁控电渣重熔过程的模拟及实验研究[D]. 上海:上海大学, 2018.
WANG H. Modeling and experiment study on the magnetically controlled electroslag remelting process[D]. Shanghai: Shanghai University, 2018.
|
[10] |
WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017,46(3):777-782(in Chinese). (魏文庆, 刘炳强, 姜军生, 等. 热处理对Nb-35Ti-4C合金微观组织和力学机制的影响[J]. 稀有金属材料与工程, 2017,46(3):777-782.
WEI W Q, LIU B Q, JIANG J S, et al. Effect of heat treatment on microstructure and mechanical behavior of Nb-35Ti-4C alloy[J]. Rare Metal Materials and Engineering, 2017, 46(3): 777-782(in Chinese).
|
[11] |
GUI M X, XU Q B. Mechanism of MgO thermal reduction reaction[J]. Foreign Refractories, 2006,31(5):45-50. (桂明玺, 徐庆斌. MgO的Al热还原反应的机理[J]. 国外耐火材料, 2006,31(5):45-50.
GUI M X, XU Q B. Mechanism of MgO thermal reduction reaction[J]. Foreign Refractories, 2006, 31(5): 45-50.
|
[12] |
JIANG W G, GUO W J, DONG L, et al. Interfacial reaction mechanism between alumina crucible and nickle-based super alloy[J]. Special Casting & Nonferrous Alloys, 2023,43(3):308-313. (姜卫国, 郭万军, 董琳, 等. 氧化铝坩埚与高温合金的界面反应机制[J]. 特种铸造及有色合金, 2023,43(3):308-313.
JIANG W G, GUO W J, DONG L, et al. Interfacial reaction mechanism between alumina crucible and nickle-based super alloy[J]. Special Casting & Nonferrous Alloys, 2023, 43(3): 308-313.
|
[13] |
XUE H, GAO J G, ZHAO P, et al. Effect of addition ratio of returned materials on precipitation behavior of inclusions in superalloy[J/OL]. China Metallurgy, 1-12. (薛辉, 高锦国, 赵朋, 等. 返回料添加比例对高温合金夹杂物析出行为的影响[J/OL]. 中国冶金, 1-12.
XUE H, GAO J G, ZHAO P, et al. Effect of addition ratio of returned materials on precipitation behavior of inclusions in superalloy[J/OL]. China Metallurgy, 1-12.
|