Citation: | LI Yanlong, LIU Man, SUN Linyu, WU Junhui, GAN Xiaolong, XU Guang. Sliding wear behavior of HB550 grade low-alloy martensite wear-resistant steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 170-177. doi: 10.7513/j.issn.1004-7638.2025.01.024 |
[1] |
WANG H F. Development trend and future development trend of metal wear-resistant materials in China[J]. Foundry, 2010(1):577-591. (王洪发. 中国金属耐磨材料的发展态势与未来的发展趋向[J]. 铸造, 2010(1):577-591.
WANG H F. Development trend and future development trend of metal wear-resistant materials in China[J]. Foundry, 2010(1): 577-591.
|
[2] |
WEN S T. Principles of tribology[M]. Beijing: Tsinghua University Press, 1990. (温诗涛. 摩擦学原理[M]. 北京: 清华大学出版社, 1990.
WEN S T. Principles of tribology[M]. Beijing: Tsinghua University Press, 1990.
|
[3] |
HAN P, ZHANG X P, LIN B, et al. Wear resistance of H450 and NM450 low alloy steels[J]. Materials Protection, 2020,53(2):67-69, 125. (韩嫔, 张绪平, 林波, 等. H450和NM450低合金钢的耐磨性能[J]. 材料保护, 2020,53(2):67-69, 125.
HAN P, ZHANG X P, LIN B, et al. Wear resistance of H450 and NM450 low alloy steels[J]. Materials Protection, 2020, 53(2): 67-69, 125.
|
[4] |
GAO Q, Wang Q, ZHANG Q X, et al. Research and development of low-cost and high-toughness NM500 steel plate[J]. Journal of Iron and Steel Research, 2024, 36(6): 743-751. (高擎, 王麒, 张青学, 等. 低成本高韧性NM500钢板的研究及开发[J]. 钢铁研究学报: 2024, 36(6): 743-751.
GAO Q, Wang Q, ZHANG Q X, et al. Research and development of low-cost and high-toughness NM500 steel plate[J]. Journal of Iron and Steel Research, 2024, 36(6): 743-751.
|
[5] |
GUO X B. Study on microstructure properties of NM550 low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2017. (郭秀斌. NM550级低合金高强度耐磨钢的组织性能研究[D]. 沈阳: 东北大学, 2017.
GUO X B. Study on microstructure properties of NM550 low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2017.
|
[6] |
DENG X T. Research on microstructure and performance control and wear mechanism of low-alloy wear-resistant steel[D]. Shenyang: Northeastern University, 2014. (邓想涛. 低合金耐磨钢组织性能控制及磨损机理研究[D]. 沈阳: 东北大学, 2014.
DENG X T. Research on microstructure and performance control and wear mechanism of low-alloy wear-resistant steel[D]. Shenyang: Northeastern University, 2014.
|
[7] |
YUN M X. Study on microstructure properties of low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2022. (云妙贤. 低合金高强度耐磨钢组织性能的研究[D]. 沈阳: 东北大学, 2022.
YUN M X. Study on microstructure properties of low-alloy high-strength wear-resistant steel[D]. Shenyang: Northeastern University, 2022.
|
[8] |
SU C, FENG G H, ZHI J G, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel Research, 2021,33(12):1289-1295. (宿成, 冯光宏, 智建国, 等. 稀土对耐磨板NM400低温冲击韧性的影响[J]. 钢铁研究学报, 2021,33(12):1289-1295.
SU C, FENG G H, ZHI J G, et al. Effect of rare earth on low temperature impact toughness of NM400 wear-resistant steel plate[J]. Journal of Iron and Steel Research, 2021, 33(12): 1289-1295.
|
[9] |
ZHANG W P, LIU H Y, XU G X, et al. Development of high quality NM450 wear-resistant steel plate for box body of self discharge truck[J]. Special Steel, 2022,43(3):39-42. (张卫攀, 刘红艳, 徐桂喜, 等. 高品质自卸车厢体用NM450耐磨钢板的开发[J]. 特殊钢, 2022,43(3):39-42.
ZHANG W P, LIU H Y, XU G X, et al. Development of high quality NM450 wear-resistant steel plate for box body of self discharge truck[J]. Special Steel, 2022, 43(3): 39-42.
|
[10] |
DONG Y Q, JIN J F, GE X, et al. Analysis on the causes of welding cracks in NM450 wear-resistant steel[J]. Wide and Heavy Plate, 2021,27(3):16-20. (董延青, 靳建锋, 葛昕, 等. NM450耐磨钢焊接裂纹产生原因探析[J]. 宽厚板, 2021,27(3):16-20.
DONG Y Q, JIN J F, GE X, et al. Analysis on the causes of welding cracks in NM450 wear-resistant steel[J]. Wide and Heavy Plate, 2021, 27(3): 16-20.
|
[11] |
THOMAS G, CHEN Y L. Structure and mechanical properties of Fe-Cr-Mo-C alloys with and without boron[J]. Metallurgical Transactions A, 1981,12(6):933-950. doi: 10.1007/BF02643474
|
[12] |
GAO Q Y. Evolution of gradient nanostructures of martensitic high strength steel under sliding[D]. Ningbo: Ningbo University, 2020. (高清远. 马氏体高强钢滑动摩擦磨损下的梯度纳米结构演化研究[D]. 宁波: 宁波大学, 2020.
GAO Q Y. Evolution of gradient nanostructures of martensitic high strength steel under sliding[D]. Ningbo: Ningbo University, 2020.
|
[13] |
LIU Z Y, YANG D P, YI H L, et al. Effect of tempering temperature on microstructure and tensile properties of medium carbon martensitic steel with different degrees of self-tempering[J]. Journal of Iron and Steel Research, 2023,35(12):1505-1516. (刘志宇, 杨达朋, 易红亮, 等. 回火温度对不同自回火程度的中碳马氏体钢组织和拉伸性能的影响[J]. 钢铁研究学报, 2023,35(12):1505-1516.
LIU Z Y, YANG D P, YI H L, et al. Effect of tempering temperature on microstructure and tensile properties of medium carbon martensitic steel with different degrees of self-tempering[J]. Journal of Iron and Steel Research, 2023, 35(12): 1505-1516.
|
[14] |
HAN X Y. Functions of niobium, vanadium and titanium in microalloyed steels[J]. Wide and Heavy Plate, 2006(1):39-41. (韩孝永. 铌、钒、钛在微合金钢中的作用[J]. 宽厚板, 2006(1):39-41.
HAN X Y. Functions of niobium, vanadium and titanium in microalloyed steels[J]. Wide and Heavy Plate, 2006(1): 39-41.
|
[15] |
LU G S. Effect of quenching in critical zone on elemental segregation and low-temperature toughness of 9% Ni steel[D]. Anshan: University of Science and Technology Liaoning, 2020. (鲁广甡. 临界区淬火对9%Ni钢的元素偏析及低温韧性的影响[D]. 鞍山: 辽宁科技大学, 2020.
LU G S. Effect of quenching in critical zone on elemental segregation and low-temperature toughness of 9% Ni steel[D]. Anshan: University of Science and Technology Liaoning, 2020.
|
[16] |
HAN R Y. Microstructure and mechanical property control and wear mechanism study for new air-cooled martensitic wear-resistant steel [D]. Wuhan: Wuhan University of Science and Technology, 2023. (韩汝洋. 新型空冷马氏体耐磨钢的组织性能调控与磨损机理研究[D]. 武汉: 武汉科技大学, 2023.
HAN R Y. Microstructure and mechanical property control and wear mechanism study for new air-cooled martensitic wear-resistant steel [D]. Wuhan: Wuhan University of Science and Technology, 2023.
|
[17] |
LI G, HAO S, GAO W, et al. The effect of applied load and rotation speed on wear characteristics of Al-Cu-Li alloy[J]. Journal of Materials Engineering and Performance, 2022,31(7):1-11.
|
[18] |
KINGSFORD K, HEYAN L, BIAO M, et al. Coefficient of friction and wear rate of paper-based composite friction material against 65Mn steel[J]. Proceedings of the Institution of Mechanical Engineers, 2021,235(3):544-550.
|
[19] |
MA H S, LIANG G X, LÜ M, et al. Study on dry sliding friction and wear characteristics of AISI 4340 steel[J]. Tribology, 2018,38(1):59-66. (马红帅, 梁国星, 吕明, 等. AISI 4340钢干滑动摩擦磨损特性研究[J]. 摩擦学学报, 2018,38(1):59-66.
MA H S, LIANG G X, LÜ M, et al. Study on dry sliding friction and wear characteristics of AISI 4340 steel[J]. Tribology, 2018, 38(1): 59-66.
|
[20] |
LI Y, SCHREIBER P, SCHNEIDER J, et al. Tribological mechanisms of slurry abrasive wear[J]. Friction, 2023,11(6):1079-1093. doi: 10.1007/s40544-022-0654-1
|
[21] |
ZHU X X, YANG G W, ZHAO G, et al. Impact wear behavior of manganese martensitic wear-resistant steel in hot rolling[J]. Iron and Steel, 2022,57(7):154-161. (朱晓翔, 杨庚蔚, 赵刚, 等. 热轧中锰马氏体耐磨钢的冲击磨损行为[J]. 钢铁, 2022,57(7):154-161.
ZHU X X, YANG G W, ZHAO G, et al. Impact wear behavior of manganese martensitic wear-resistant steel in hot rolling[J]. Iron and Steel, 2022, 57(7): 154-161.
|
[22] |
SHI Z, BLOYCE A, SUN Y, et al. Influence of surface melting on dry rolling-sliding wear of aluminium bronze against steel[J]. Wear, 1996,198(1-2):300-306. doi: 10.1016/0043-1648(96)07205-5
|
[23] |
CHEN P, WANG P F, QIAO X X, et al. Study on sliding friction and wear properties of 45 steel/PA66 with auxiliary dry[J]. Tribology, 2019,39(1):26-34. (陈平, 王朋飞, 乔小溪. 45钢/PA66配副干滑动摩擦磨损性能研究[J]. 摩擦学学报, 2019,39(1):26-34.
CHEN P, WANG P F, QIAO X X, et al. Study on sliding friction and wear properties of 45 steel/PA66 with auxiliary dry[J]. Tribology, 2019, 39(1): 26-34.
|
[24] |
ZHANG Y S, HAN Z, WANG K, et al. Friction and wear behaviors of nanocrystalline surface layer of pure copper[J]. Wear, 2006,260(9):942-948.
|
[25] |
MOORE M A, DOUTHWAITE R M. Plastic deformation below worn surfaces[J]. Metallurgical Transactions A, 1976,7(12):1833. doi: 10.1007/BF02659813
|
[26] |
LIU J J. Principle of material wear and its wear resistance[M]. Beijing: Tsinghua University Press, 1993. (刘家浚. 材料磨损原理及其耐磨性[M]. 北京: 清华大学出版社, 1993.
LIU J J. Principle of material wear and its wear resistance[M]. Beijing: Tsinghua University Press, 1993.
|
[27] |
FARHAT Z N. Contribution of crystallographic texturing to the sliding friction behaviour of fcc and hcp metals[J]. Wear, 2001,250(1):401-408.
|
[28] |
TREVISIOL C, JOURANI A, BOUVIER S. Effect of microstructures with the same chemical composition and similar hardness levels on tribological behavior of a low alloy steel[J]. Tribology International, 2018,127:389-403. doi: 10.1016/j.triboint.2018.06.019
|