Citation: | WEI Lixin, GAO Ling, LÜ Shining, GAO Youshan. FexCy micro-mechanical properties based on response surface methodology and molecular dynamics[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 184-191. doi: 10.7513/j.issn.1004-7638.2025.01.026 |
[1] |
LI X, YIN Y H, ZHANG Y Z. Molecular dynamics Simulation of the effects of point defect type and concentration on plastic deformation behavior of α-Fe[J]. Rare Metal Materials and Engineering, 2022,51(8):2881-2891. (李翔, 尹益辉, 张元章. 点缺陷类型和浓度对α-Fe塑性变形行为影响的分子动力学模拟[J]. 稀有金属材料与工程, 2022,51(8):2881-2891.
LI X, YIN Y H, ZHANG Y Z. Molecular dynamics Simulation of the effects of point defect type and concentration on plastic deformation behavior of α-Fe[J]. Rare Metal Materials and Engineering, 2022, 51(8): 2881-2891.
|
[2] |
WEI Z H, MA X, KE C B, et al. Molecular dynamics simulation of migration behavior of FCC-BCC atomic terrace-step phase boundary in iron-based alloy[J]. Acta Physica Sinica, 2020,69(13):242-254. (韦昭召, 马骁, 柯常波, 等. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究[J]. 物理学报, 2020,69(13):242-254.
WEI Z H, MA X, KE C B, et al. Molecular dynamics simulation of migration behavior of FCC-BCC atomic terrace-step phase boundary in iron-based alloy[J]. Acta Physica Sinica, 2020, 69(13): 242-254.
|
[3] |
YUAN Y Q, ZENG X G, HU Y F. Molecular dynamics simulation for crack propagation of α-Fe under uniaxial tension and fatigue loading[J]. Journal of Xinyang Normal University(Natural Science Edition), 2016,29(1):31-37. (袁玉全, 曾祥国, 胡燕飞. 分子动力学模拟α-Fe拉伸与疲劳裂纹扩展机理[J]. 信阳师范学院学报(自然科学版), 2016,29(1):31-37.
YUAN Y Q, ZENG X G, HU Y F. Molecular dynamics simulation for crack propagation of α-Fe under uniaxial tension and fatigue loading[J]. Journal of Xinyang Normal University(Natural Science Edition), 2016, 29(1): 31-37.
|
[4] |
WANG Y T, ZENG X G, YANG X. Molecular dynamics simulation of effect of temperature on void nucleation and growth of single crystal iron at a high strain rate[J]. Acta Physica Sinica, 2019, 68(24): 235-251. (王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究[J]. 物理学报, 2019, 68(24): 235-251.
WANG Y T, ZENG X G, YANG X. Molecular dynamics simulation of effect of temperature on void nucleation and growth of single crystal iron at a high strain rate[J]. Acta Physica Sinica, 2019, 68(24): 235-251.
|
[5] |
CHENG Z X, WANG H, LIU G R. Fatigue crack propagation in carbon steel using RVE based model[J]. Engineering Fracture Mechanics, 2021,258(12):108050.
|
[6] |
QU C C, LIU K R, HAN Q, et al. Optimization of Cu and Sc content in Al-Cu-Sc aluminum alloy conductor materials by response surface method[J]. Rare Metals and Cemented Carbides, 2021,49(04):43-49. (曲晨驰, 刘奎仁, 韩庆, 等. 响应面法优化Al-Cu-Sc铝合金导体材料Cu、Sc元素的含量[J]. 稀有金属与硬质合金, 2021,49(04):43-49.
QU C C, LIU K R, HAN Q, et al. Optimization of Cu and Sc content in Al-Cu-Sc aluminum alloy conductor materials by response surface method[J]. Rare Metals and Cemented Carbides, 2021, 49(04): 43-49.
|
[7] |
HU J, ZHANG P L, WU L, et al. Study on mechanical properties of cementitious matrix based on response surface method and optimization of the fitting ratio[J]. Materials Reports, 2022,36(S2):173-177. (胡静, 张品乐, 吴磊, 等. 基于响应面法的ECC基体力学性能研究与配合比优化[J]. 材料导报, 2022,36(S2):173-177.
HU J, ZHANG P L, WU L, et al. Study on mechanical properties of cementitious matrix based on response surface method and optimization of the fitting ratio[J]. Materials Reports, 2022, 36(S2): 173-177.
|
[8] |
HEPBURN D J, ACKLAND G J. Metallic-covalent interatomic potential for carbon in iron[J]. Physical Review B, 2008,78(16):165115.
|
[9] |
YE T Z, YAO H, WU Y W, et al. Molecular dynamics study on tensile mechanical properties of FeCrAl alloy[J]. Rare Metal Materials and Engineering, 2023,52(2):777-784. (叶天舟, 姚欢, 巫英伟, 等. FeCrAl合金拉伸力学性能分子动力学研究[J]. 稀有金属材料与工程, 2023,52(2):777-784.
YE T Z, YAO H, WU Y W, et al. Molecular dynamics study on tensile mechanical properties of FeCrAl alloy[J]. Rare Metal Materials and Engineering, 2023, 52(2): 777-784.
|
[10] |
Standard for design of steel structures GB 50017-2017[S]. Beijing: China Architecture and Construction Press, 2017. (钢结构设计标准: GB50017-2017[S]. 北京: 中国建筑工业出版社, 2017.
Standard for design of steel structures GB 50017-2017[S]. Beijing: China Architecture and Construction Press, 2017.
|