Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
HE Haixi, XU Can, YAN Xin, ZOU Zhongping. Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 198-204. doi: 10.7513/j.issn.1004-7638.2025.01.028
Citation: HE Haixi, XU Can, YAN Xin, ZOU Zhongping. Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 198-204. doi: 10.7513/j.issn.1004-7638.2025.01.028

Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces

doi: 10.7513/j.issn.1004-7638.2025.01.028
  • Received Date: 2024-10-10
  • Publish Date: 2025-02-27
  • In order to achieve the goal of enhancing the pulverized coal injection (PCI) rate, along with its stability and uniformity in vanadium-titanium blast furnaces, ultimately reducing energy consumption, a pilot-scale experimental device was developed, equivalent in scale and capacity to a 1000 m3 blast furnace PCI system. Using this setup, the effects of various PCI processes and control parameters - including the secondary air injection ratio, the ratio of pressurized to replacement air, fluidization velocity, and discharge modes-on improving the injection rate, solid-gas ratio, and overall stability had been investigated. The experimental results revealed that, with a constant total gas flow in the injection pipeline, a decrease in the secondary air injection ratio led to a significant increase in both the injection rate and solid-gas ratio, as well as reduction in stability. When the secondary air injection ratio was maintained around 45%, the PCI rate and solid-gas ratio peaked, achieving the highest energy-saving potential. Furthermore, as the ratio of pressurized to replacement air increased, the PCI rate initially rose and then declined, reaching its maximum when the ratio was controlled between at 1.5~2. Similarly, the optimal bottom fluidization velocity was identified as 0.02~0.025 m/s, maximizing the injection rate, solid-gas ratio, and stability. Comparative analysis of two discharge modes (top discharge and bottom discharge) indicated that the top discharge mode offered superior stability due to the agreement of the gas flow direction with the discharge direction.
  • loading
  • [1]
    ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online) (郑魁, 胡鹏, 黄云, 等. 高富氧喷吹条件下钒钛炉料的软熔性能[J]. 烧结球团, 2024. (Online)

    ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online)
    [2]
    CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023,44(3):114-117. (曹玉川. 攀西某低品位钒钛磁铁矿选铁工艺研究[J]. 钢铁钒钛, 2023,44(3):114-117.

    CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 114-117.
    [3]
    DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010. (董海刚. 高钙镁电炉钛渣制备优质人造金红石的研究[D]. 长沙: 中南大学, 2010.

    DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010.
    [4]
    PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010. (庞正德. 超高配比钒钛矿高炉冶炼基础理论研究[D]. 重庆: 重庆大学, 2021.

    PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010.
    [5]
    LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024,59(8):13-18, 49. (罗林根, 庞建明, 李新, 等. 钒钛磁铁矿还原-磨选工艺分离铁钛试验[J]. 钢铁, 2024,59(8):13-18, 49.

    LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024, 59(8): 13-18, 49.
    [6]
    QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023,58(5):31-38. (郄亚娜, 靳亚涛, 康媛, 等. 高炉富氢对钒钛矿软熔滴落性能的影响[J]. 钢铁, 2023,58(5):31-38.

    QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023, 58(5): 31-38.
    [7]
    CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021,44(6):209-212. (陈永卫. 淮钢高炉喷煤技术进步[J]. 山西冶金, 2021,44(6):209-212.

    CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021, 44(6): 209-212.
    [8]
    ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021,41(4):113-114. (张付昌. 低碳绿色高炉炼铁技术发展方向[J]. 冶金与材料, 2021,41(4):113-114.

    ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021, 41(4): 113-114.
    [9]
    ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024,43(1):12-15. (周翔, 白永强. 试论高炉燃料替代的降碳路径[J]. 炼铁, 2024,43(1):12-15.

    ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024, 43(1): 12-15.
    [10]
    HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010,29(3):47-49. (黄庆周, 祝和利, 张海峰. 柳钢1号高炉大喷煤操作实践[J]. 炼铁, 2010,29(3):47-49.

    HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010, 29(3): 47-49.
    [11]
    YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010,9:142-143. (虞日升. 高炉煤粉喷吹系统工艺简介[J]. 现代经济信息, 2010,9:142-143.

    YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010, 9: 142-143.
    [12]
    LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024,47(5):123-125. (李红艳, 胡心光. 富氧率提升下的钒钛矿高炉冶炼[J]. 山西冶金, 2024,47(5):123-125.

    LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024, 47(5): 123-125.
    [13]
    YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024,46(2):32-34. (尹晓成. 高炉炼铁工艺中大喷煤量与富氧率的协同优化研究[J]. 甘肃冶金, 2024,46(2):32-34.

    YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024, 46(2): 32-34.
    [14]
    LIU L L, KUANG S B, GUO B Y, et al. Combustion characteristics of charcoal, semicoke, and pulverized coal in blast furnace and their impacts on reactor performance[J]. Powder Technology, 2024,433:119243.
    [15]
    LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5):17-19. (刘虎林. 高炉喷煤对渣中TiO2过还原的影响探讨[J]. 四川冶金, 2004(5):17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005

    LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5): 17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005
    [16]
    DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9):14-16. (刁日升, 胡宾生. 攀钢高炉未燃煤粉对炉渣流动性的影响[J]. 钢铁, 2004(9):14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003

    DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9): 14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003
    [17]
    DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9):40-42. (代维. 提高2500 m3高炉冶炼钒钛矿喷煤比的实践[J]. 河北冶金, 2015(9):40-42.

    DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9): 40-42.
    [18]
    DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014,35(5):83-87. (杜斯宏, 黄彬, 曾华锋. 低品位条件下钒钛磁铁矿高喷煤比冶炼实践[J]. 钢铁钒钛, 2014,35(5):83-87.

    DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 83-87.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (58) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return