Citation: | HE Haixi, XU Can, YAN Xin, ZOU Zhongping. Study on efficient pulverized coal injection operation technology in vanadium-titanium blast furnaces[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(1): 198-204. doi: 10.7513/j.issn.1004-7638.2025.01.028 |
[1] |
ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online) (郑魁, 胡鹏, 黄云, 等. 高富氧喷吹条件下钒钛炉料的软熔性能[J]. 烧结球团, 2024. (Online)
ZHENG K, HU P, HUANG Y, et al. Soft melt performance of vanadium titanium charge under high oxygen-enriched injection conditions[J]. Sintering and Pelletizing, 2024. (Online)
|
[2] |
CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023,44(3):114-117. (曹玉川. 攀西某低品位钒钛磁铁矿选铁工艺研究[J]. 钢铁钒钛, 2023,44(3):114-117.
CAO Y C. Experimental study on iron concentrate separation from a low-grade vanadium-titanium magnetite in Panxi area[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 114-117.
|
[3] |
DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010. (董海刚. 高钙镁电炉钛渣制备优质人造金红石的研究[D]. 长沙: 中南大学, 2010.
DONG H G. Study on production of high-quality synthetic rutile fromelectric furnace titanium slag with high content of calciumand magnesium[D]. Changsha: Central South University, 2010.
|
[4] |
PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010. (庞正德. 超高配比钒钛矿高炉冶炼基础理论研究[D]. 重庆: 重庆大学, 2021.
PANG Z D. Fundamental theory research on blast furnace smelting with ultra-high ratio vanadium titanomagnetite[D]. Chongqing: Chongqing University, 2010.
|
[5] |
LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024,59(8):13-18, 49. (罗林根, 庞建明, 李新, 等. 钒钛磁铁矿还原-磨选工艺分离铁钛试验[J]. 钢铁, 2024,59(8):13-18, 49.
LUO L G, PANG J M, LI X, et al. Separation of iron and titanium by reduction grinding separation process of vanadium titanium magnetite[J]. Iron and Steel, 2024, 59(8): 13-18, 49.
|
[6] |
QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023,58(5):31-38. (郄亚娜, 靳亚涛, 康媛, 等. 高炉富氢对钒钛矿软熔滴落性能的影响[J]. 钢铁, 2023,58(5):31-38.
QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023, 58(5): 31-38.
|
[7] |
CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021,44(6):209-212. (陈永卫. 淮钢高炉喷煤技术进步[J]. 山西冶金, 2021,44(6):209-212.
CHEN Y W. Technical progress of blast furnace coal injection in Huaigang[J]. Shanxi Metallurgy, 2021, 44(6): 209-212.
|
[8] |
ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021,41(4):113-114. (张付昌. 低碳绿色高炉炼铁技术发展方向[J]. 冶金与材料, 2021,41(4):113-114.
ZHANG F C. Development direction of green blast furnace ironmaking technology[J]. Metallurgy and Materials, 2021, 41(4): 113-114.
|
[9] |
ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024,43(1):12-15. (周翔, 白永强. 试论高炉燃料替代的降碳路径[J]. 炼铁, 2024,43(1):12-15.
ZHOU X, BAI Y Q. Research on BF carbon reduction through fuel substitutes[J]. Ironmaking, 2024, 43(1): 12-15.
|
[10] |
HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010,29(3):47-49. (黄庆周, 祝和利, 张海峰. 柳钢1号高炉大喷煤操作实践[J]. 炼铁, 2010,29(3):47-49.
HUANG Q Z, ZHU H L, ZHANG H F. Practice of large coal injection operation in No. 1 blast furnace of Liu Steel[J]. Ironmaking, 2010, 29(3): 47-49.
|
[11] |
YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010,9:142-143. (虞日升. 高炉煤粉喷吹系统工艺简介[J]. 现代经济信息, 2010,9:142-143.
YU R S. Introduction to the process of blast furnace coal powder injection system[J]. Modern Economic Information, 2010, 9: 142-143.
|
[12] |
LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024,47(5):123-125. (李红艳, 胡心光. 富氧率提升下的钒钛矿高炉冶炼[J]. 山西冶金, 2024,47(5):123-125.
LI H Y, HU X G. Production practice of improving oxygen enrichment rate in vanadium titanium ore blast furnace smelting[J]. Shanxi Metallurgy, 2024, 47(5): 123-125.
|
[13] |
YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024,46(2):32-34. (尹晓成. 高炉炼铁工艺中大喷煤量与富氧率的协同优化研究[J]. 甘肃冶金, 2024,46(2):32-34.
YIN X C. Study on cooperative optimization of large coal injection and oxygen enrichment rate in blast furnace ironmaking process[J]. Gansu Metallurgy, 2024, 46(2): 32-34.
|
[14] |
LIU L L, KUANG S B, GUO B Y, et al. Combustion characteristics of charcoal, semicoke, and pulverized coal in blast furnace and their impacts on reactor performance[J]. Powder Technology, 2024,433:119243.
|
[15] |
LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5):17-19. (刘虎林. 高炉喷煤对渣中TiO2过还原的影响探讨[J]. 四川冶金, 2004(5):17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005
LIU H L. The effect of coal injecton on the over-reduction of TiO2 in the blast furnace[J]. Sichuan Metallurgy, 2004(5): 17-19. doi: 10.3969/j.issn.1001-5108.2004.05.005
|
[16] |
DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9):14-16. (刁日升, 胡宾生. 攀钢高炉未燃煤粉对炉渣流动性的影响[J]. 钢铁, 2004(9):14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003
DIAO R S, HU B S. Influence of unburned PCI on the blast furnace slag viscosity in Panzhihua Steel[J]. Iron and Steel, 2004(9): 14-16. doi: 10.3321/j.issn:0449-749X.2004.09.003
|
[17] |
DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9):40-42. (代维. 提高2500 m3高炉冶炼钒钛矿喷煤比的实践[J]. 河北冶金, 2015(9):40-42.
DAI W. Practice to increase coal injection ratio in smelting vanadium titanium ore in 2500 m3 blast furnace[J]. Hebei Metallurgy, 2015(9): 40-42.
|
[18] |
DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014,35(5):83-87. (杜斯宏, 黄彬, 曾华锋. 低品位条件下钒钛磁铁矿高喷煤比冶炼实践[J]. 钢铁钒钛, 2014,35(5):83-87.
DU S H, HUANG B, ZENG H F. Practice of vanadium titano-magnetite high coal injection ratio blast furnace process under low grade condition[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 83-87.
|