Volume 42 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
He Kui, Cao Zhiqin, Wang Yuekun, Zhang Xuefeng. Current research status of numerical simulation for laser cladding process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 172-179. doi: 10.7513/j.issn.1004-7638.2021.03.026
Citation: He Kui, Cao Zhiqin, Wang Yuekun, Zhang Xuefeng. Current research status of numerical simulation for laser cladding process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 172-179. doi: 10.7513/j.issn.1004-7638.2021.03.026

Current research status of numerical simulation for laser cladding process

doi: 10.7513/j.issn.1004-7638.2021.03.026
  • Received Date: 2020-10-15
  • Publish Date: 2021-06-10
  • Laser cladding is a new type of additive manufacturing and surface repair technology, which has become research hotspot in the industrial field. High performance alloy coating prepared by laser cladding technology can significantly improve the wear resistance, corrosion resistance and service life of the substrate. In this paper, the numerical simulation research of temperature field, residual stress and microstructure deformation in laser cladding process had been described. The numerical simulation methods used in analyzing the distribution and evolution of the above physical parameters at home and abroad was summarized. The formation mechanism of residual stress and fabric deformation were revealed, which provided a theoretical basis for obtaining high-quality cladding coating. Finally, the future development trend of numerical simulation technology in laser cladding process was prospected.
  • loading
  • [1]
    Trunova O, Beck T, Herzog R, et al. Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines-Part I: Experiments[J]. Surface and Coatings Technology, 2008,202(20):5027−5032. doi: 10.1016/j.surfcoat.2008.05.006
    [2]
    Wang Y Q, Sayre G. Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability[J]. Surface and Coatings Technology, 2009,203(16):2186−2192. doi: 10.1016/j.surfcoat.2009.02.007
    [3]
    Huang Y L, Liang G Y, Su J Y. A comprehensive model of laser cladding by powder feeding[J]. Acta Metallurica Sinica, 2004,17(1):21−27.
    [4]
    Tseng W C, Aoh J N. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J]. Optics & Laser Technology, 2013,48:141−152.
    [5]
    Laser-assisted fabrication of materials[M]. Springer Science & Business Media, 2012.
    [6]
    Wang Lilin, Lin Xin, Wang Yonghui, et al. Real time observation of solidification structure in laser remelting pool[J]. Acta Metallurica Sinica, 2015,51(4):492−498. (王理林, 林鑫, 王永辉, 等. 激光重熔熔池凝固组织的实时观察研究[J]. 金属学报, 2015,51(4):492−498.
    [7]
    Chen Jing, Tan Hua, Yang Hai’ou, et al. Evolution of molten pool morphology in laser rapid prototyping[J]. Chinese Journal of Lasers, 2007,34(3):442−446. (陈静, 谭华, 杨海欧, 等. 激光快速成形过程中熔池形态的演化[J]. 中国激光, 2007,34(3):442−446. doi: 10.3321/j.issn:0258-7025.2007.03.029
    [8]
    Lei Jianbo, Yang Xichen, Chen Juan, et al. Detection of surface temperature field distribution of laser cladding pool[J]. Chinese Journal Of Lasers, 2008,35(10):1605−1608. (雷剑波, 杨洗陈, 陈娟, 等. 激光熔覆熔池表面温度场分布的检测[J]. 中国激光, 2008,35(10):1605−1608. doi: 10.3321/j.issn:0258-7025.2008.10.033
    [9]
    Wang Xiangyu, Wang Gang, Luo Sheng, et al. Multiphase flow model for laser cladding of T15 high speed steel[J]. China Surface Engineering, 2019,32(1):118−123. (王翔宇, 王罡, 罗升, 等. T15 高速钢异质材料激光熔覆过程的多相流模型[J]. 中国表面工程, 2019,32(1):118−123.
    [10]
    Ren Zhonghe, Wu Meiping, Tang Youhong, et al. Numerical simulation and experimental study of laser cladding based on thermal mechanical coupling[J]. Laser & Optoelectronics Progress, 2019,56(5):1−10. (任仲贺, 武美萍, 唐又红, 等. 基于热力耦合的激光熔覆数值模拟与实验研究[J]. 激光与光电子学进展, 2019,56(5):1−10.
    [11]
    Li Chang, Yu Zhibin, Gao Jingxiang, et al. Numerical simulation and experiment of thermal elastic plastic flow multi field coupling in laser cladding process[J]. China Surface Engineering, 2019,32(1):125−134. (李昌, 于志斌, 高敬翔, 等. 激光熔覆工艺热-弹-塑-流多场耦合数值模拟与试验[J]. 中国表面工程, 2019,32(1):125−134.
    [12]
    Li Chang, Yu Zhibin, Gao Jingxiang, et al. Multi field coupling simulation and experiment of laser cladding under temperature change of physical parameters[J]. Acta Armamentarii, 2019,40(6):1258−1270. (李昌, 于志斌, 高敬翔, 等. 物性参数温度变化下激光熔覆多场耦合模拟与实验[J]. 兵工学报, 2019,40(6):1258−1270. doi: 10.3969/j.issn.1000-1093.2019.06.017
    [13]
    (杨世铭, 陶文铨. 传热学(第四版)[M]. 北京: 高等教育出版社, 2006: 235−240.)

    Yang Shiming, Tao Wenquan. Heat transfer[M]. 4th Edition. Beijing: Higher Education Press, 2006: 235−240.
    [14]
    Parekh R, Buddu R K, Patel R I. Multiphysics simulation of laser cladding process to study the effect of process parameters on clad geometry[J]. Procedia Technology, 2016,23:529−536. doi: 10.1016/j.protcy.2016.03.059
    [15]
    Guo Wei, Zhang Yapu, Chai Rongxia, et al. Numerical simulation and experimental study of laser cladding 304 stainless steel on 27SiMn Steel[J]. Applied Laser, 2019,39(1):35−41. (郭卫, 张亚普, 柴蓉霞, 等. 27SiMn钢表面激光熔覆304不锈钢数值模拟及实验研究[J]. 应用激光, 2019,39(1):35−41.
    [16]
    Pang Ming, Liu Quanxiu. Numerical simulation of temperature field of laser cladding wear-resistant and corrosion-resistant self-lubricating coating on 300M steel[J]. Journal of Aeronautical Materials, 2020,40(2):35−42. (庞铭, 刘全秀. 300M 钢激光熔覆耐磨防腐自润滑涂层温度场数值模拟研究[J]. 航空材料学报, 2020,40(2):35−42. doi: 10.11868/j.issn.1005-5053.2019.000051
    [17]
    Cao Wenqin, Shao Xiaofeng, Zhu Haiyan. Numerical simulation of laser cladding Ni based alloy layer on ER8 wheel material[J]. Hot Working Technology, 2019,48(24):98−106. (曹文琴, 邵晓峰, 朱海燕. ER8车轮材料激光熔覆镍基合金层的数值仿真研究[J]. 热加工工艺, 2019,48(24):98−106.
    [18]
    Zhao Shengju, Qi Wenjun, Huang Yanhua, et al. Numerical simulation of temperature field and thermal cycle characteristics of laser cladding Ni60 based coating on TC4 surface[J]. Surface Technology, 2020,49(2):312−319. (赵盛举, 祁文军, 黄艳华, 等. TC4表面激光熔覆Ni60基涂层温度场热循环特性数值模拟研究[J]. 表面技术, 2020,49(2):312−319.
    [19]
    Wang Tao, Qin Lingchao, Liu Jiaqi. Simulation and experimental verification of laser cladding CoNiCrAlY temperature field based on finite element method[J]. Hot Working Technology, 2018,47(18):154−161. (王涛, 秦令超, 刘佳奇. 基于有限元的激光熔覆CoNiCrAlY温度场模拟及实验验证[J]. 热加工工艺, 2018,47(18):154−161.
    [20]
    Guo Wei, Li Kaikai, Chai Rongxia, et al. Numerical simulation and experiment of dilution effect of laser cladding 304 stainless steel[J]. Laser & Optoelectronics Progress, 2019,56(5):161−169. (郭卫, 李凯凯, 柴蓉霞, 等. 激光熔覆304不锈钢稀释效应的数值模拟与实验[J]. 激光与光电子学进展, 2019,56(5):161−169.
    [21]
    Zhang Jiping, Shi Shihong, Jiang Weiwei, et al. Temperature field simulation and process optimization of three beam laser cladding[J]. Chinese Journal of Lasers, 2019,46 (10):122−129. (张吉平, 石世宏, 蒋伟伟, 等. 三光束光内送丝激光熔覆温度场仿真分析与工艺优化[J]. 中国激光, 2019,46 (10):122−129.
    [22]
    Sun Deping, Yuan Haichao, Ju Heng. Numerical simulation of residual stress in laser cladding layer of Fe Mn Si shape memory alloy[J]. Hot Working Technology, 2020,(16):114−117. (孙德平, 苑海超, 鞠恒. Fe-Mn-Si记忆合金激光熔覆层残余应力的数值模拟[J]. 热加工工艺, 2020,(16):114−117.
    [23]
    Yao Chenguang, An Zhibin, Yang Zhufang. Residual stress distribution and numerical simulation analysis of Inconel718 alloy additive manufacturing[J]. Mechanical Manufacturing and Automation, 2019,4(36):134−136. (姚晨光, 安志斌, 杨竹芳. Inconel718合金增材制造残余应力分布与数值模拟分析[J]. 机械制造与自动化, 2019,4(36):134−136.
    [24]
    Liu Xiaodong, Jiang Honglei, Xie Meng. Residual stress analysis of Q345 steel by laser cladding[J]. Heat Treatment of Metals, 2020,45(3):231−235. (刘晓东, 姜洪雷, 谢蒙. Q345钢激光熔覆的残余应力分析[J]. 金属热处理, 2020,45(3):231−235.
    [25]
    Zhang Tian Gang, Zhang Qian, Yao Bo, et al. Numerical simulation of temperature field and stress field of Ni based laser cladding layer on TC4 surface[J]. Laser & Optoelectronics Progress, 2020,58(3):31−40. (张天刚, 张倩, 姚波, 等. TC4表面Ni基激光熔覆层温度场和应力场数值模拟[J]. 激光与光电子学进展, 2020,58(3):31−40.
    [26]
    He Qingkun, Song Lixin. Stress analysis of laser cladding on different thickness substrates[J]. Journal of Laser, 2018,39(1):60−63. (赫庆坤, 宋立新. 不同厚度基体激光熔覆应力分析[J]. 激光杂志, 2018,39(1):60−63.
    [27]
    Gong Cheng, Wang Lifang, Zhu Gangxian, et al. Effect of laser additive manufacturing process parameters on residual stress of cladding layer[J]. Laser Technology, 2019,43(2):263−268. (龚丞, 王丽芳, 朱刚贤, 等. 激光增材制造工艺参量对熔覆层残余应力的影响[J]. 激光技术, 2019,43(2):263−268.
    [28]
    Han Hui, Qi Wenjun, Dang Yuanxiao, et al. Influence of path setting on temperature field and stress-strain field of 304 stainless steel laser cladding[J]. Hot Working Technology, 2017,46(12):148−152. (韩会, 祁文军, 党元晓, 等. 路径设置对304不锈钢激光熔覆温度场及应力应变场的影响[J]. 热加工工艺, 2017,46(12):148−152.
    [29]
    Yu Tianbiao, Qiao Ruozhen, Han Jibiao, et al. Numerical simulation of residual stress field in laser cladding of inclined substrate[J]. Hot Working Technology, 2020,49 (2):82−86. (于天彪, 乔若真, 韩继标, 等. 倾斜基体激光熔覆残余应力场的数值模拟[J]. 热加工工艺, 2020,49 (2):82−86.
    [30]
    Gandin Ch A ,Rappaz M . A 3D cellular automaton algorithm for the prediction of dendritic grain growth[J]. Acta Materialia, 1997,45(5):2187−2195. doi: 10.1016/S1359-6454(96)00303-5
    [31]
    Ma Rui, Dong Zhibo, Wei Yanhong, et al. Simulation and Simulation of solidification structure evolution process of nickel base alloy weld[J]. Transactions of the China Welding Institution, 2010,31(7):43−46. (马瑞, 董志波, 魏艳红, 等. 镍基合金焊缝凝固组织演变过程模拟和仿真[J]. 焊接学报, 2010,31(7):43−46.
    [32]
    Qi Haibo, Zhang Yunhao, Feng Xiaofei, et al. Simulation of solidification microstructure evolution in laser additive manufacturing of multicomponent alloy[J]. Transactions of the China Welding Institution, 2020,41(5):71−77. (齐海波, 张云浩, 冯校飞, 等. 多元合金激光增材制造凝固组织演变模拟[J]. 焊接学报, 2020,41(5):71−77. doi: 10.12073/j.hjxb.20190823001
    [33]
    Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J]. Physica D, 1993,63(3−4):410−423. doi: 10.1016/0167-2789(93)90120-P
    [34]
    Li De Ying, Zhang Jian, Deng Zhicheng. Phase field study on the effect of reinforced phase particles on the solidification structure of laser melt injection[J]. Hot Working Technology, 2018,47(10):179−182. (李德英, 张坚, 邓志成. 增强相颗粒对激光熔注凝固组织影响的相场法研究[J]. 热加工工艺, 2018,47(10):179−182.
    [35]
    Sun Daojin, Liu Jichang, Li Qindong. Phase field simulation of microstructure growth at the bottom of laser cladding pure nickel bath[J]. Chinese Journal of Lasers, 2013,40(4):93−98. (孙道金, 刘继常, 李钦栋. 激光熔覆纯镍熔池底部组织生长的相场法模拟[J]. 中国激光, 2013,40(4):93−98.
    [36]
    Fallah V, Amoorezaei M, Provatas N, et al. Phase-field simulation of solidification morphology in laser powder deposition of Ti–Nb alloys[J]. Acta Materialia, 2012,60(4):1633−1646. doi: 10.1016/j.actamat.2011.12.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (640) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return