Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Zheng Weifang, Mu Yongpan. Preparation of geopolymer for building by mechanical activation process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 92-96, 110. doi: 10.7513/j.issn.1004-7638.2021.04.016
Citation: Zheng Weifang, Mu Yongpan. Preparation of geopolymer for building by mechanical activation process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 92-96, 110. doi: 10.7513/j.issn.1004-7638.2021.04.016

Preparation of geopolymer for building by mechanical activation process

doi: 10.7513/j.issn.1004-7638.2021.04.016
  • Received Date: 2021-02-27
  • Publish Date: 2021-08-10
  • Using vanadium-titanium magnetite tailings for preparation of geopolymer can not only reduce pollution of the tailings, but also realize the efficient utilization of the tailings. The geopolymer was prepared from vanadium-titanium magnetite tailings in Chengde by mechanical activation process. The effect of activation time on the particle size and microstructure of the tailings and the compressive strength of the geopolymer products were investigated. The results show that prolonging the activation time can reduce the particle size and destroy the crystal structure of the tailings, which can increase the leaching concentration of active silicon and aluminum in the tailings and improve the compressive strength of the geopolymer. At the activation time of 3 h, mass ratio of tailings to kaolin of 6∶4, Ca(OH)2 and Na2SiO3 addition respectively of 10%, ratio of mortar to sand of 1∶1.5 and liquid-solid ratio of 0.20, the geopolymer with the 28-day compressive strength up to 50 MPa can be obtained. The leaching concentration of heavy metal ions in the sample meets the national standard. The amorphous aluminosilicate gel phase is tightly bonded with a small amount of zeolites, endowing the products with a high compressive strength.
  • loading
  • [1]
    Zhang Jun. New light wall materials can be produced by low-temperature autoclaving process from low-lean vanadium ilmenite resources[J]. Building Materials Development Orientation, 2013,(5):107−108. (张均. 低贫钒钛铁矿资源可以采用低温蒸压工艺生产的新型轻质墙体材料[J]. 建材发展导向, 2013,(5):107−108.
    [2]
    (于明珠. 承德市尾矿库安全监管问题与对策研究[D]. 保定: 河北大学, 2014.)

    Yu Minzhu. Study on safety supervision and management of tailings pond in Chengde[D]. Baoding:Hebei University, 2014.
    [3]
    Zhang Shaomin. Recovery of iron and titanium from a vanadium-titanium magnetite concentrate tailings in Chengde area[J]. Modern Mining, 2013,29(10):108−109. (张韶敏. 承德地区某钒钛磁铁矿选铁尾矿回收铁、钛试验[J]. 现代矿业, 2013,29(10):108−109. doi: 10.3969/j.issn.1674-6082.2013.10.038
    [4]
    Song Xiaomin, Wang Yonggang. Comprehensive recovery of titanium and iron from a tailings in Twin Towers mountain in Chengde[J]. Modern Mining, 2015,(1):86−87. (宋晓敏, 王永刚. 承德双塔山某尾矿综合回收钛、铁试验[J]. 现代矿业, 2015,(1):86−87. doi: 10.3969/j.issn.1674-6082.2015.01.027
    [5]
    Liu Changmiao, Wu Dongyin, Lv Zihu, et al. Study on Beneficiation of ilmenite in tailings of a vanadium titanium magnetite ore[J]. China Mining, 2015,(5):115−117. (刘长淼, 吴东印, 吕子虎, 等. 某钒钛磁铁矿尾矿中钛铁矿的选矿研究[J]. 中国矿业, 2015,(5):115−117. doi: 10.3969/j.issn.1004-4051.2015.05.025
    [6]
    Fernández Jiménez A, Palomo A. Characterisation of fly ashes: Poten-tial reactivity as alkaline cements[J]. Fuel, 2003,82:2259−2265. doi: 10.1016/S0016-2361(03)00194-7
    [7]
    Jiao Xiangke, Zhang Yimin, Chen Tiejun, et al. Research on utilizing low-reactive vanadium tailing as source material for geopolymer syn-thesis[J]. Non Metallic Mines, 2011,34(4):1−4. (焦向科, 张一敏, 陈铁军, 等. 利用低活性钒尾矿制备地聚合物的研究[J]. 非金属矿, 2011,34(4):1−4. doi: 10.3969/j.issn.1000-8098.2011.04.001
    [8]
    Liu Xiang, Zhang Yimin, Bao Shenxu, et al. Activated vanadium tailing by different activation methods based gepolymer[J]. NonMetallic Mines, 2014,37(4):1−3. (刘 祥, 张一敏, 包申旭, 等. 不同活化方法活化钒尾渣制备地聚合物[J]. 非金属矿, 2014,37(4):1−3. doi: 10.3969/j.issn.1000-8098.2014.04.001
    [9]
    Hu Fangfang, Zhang Yimin, Chen Tiejun, et al. Experimental study on alkali-activated stone coal aciding vanadium tailings based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2013,32(12):2449−2454. (胡芳芳, 张一敏, 陈铁军, 等. 石煤提钒尾渣制备地聚合物的研究[J]. 硅酸盐通报, 2013,32(12):2449−2454.
    [10]
    (韩涛. 矿渣粉粒度分布特征及其对水泥强度的影响[D]. 西安: 西安建筑科技大学, 2004.)

    Han Tao. The distribute characteristic of slag powder and influence on strength of cement[D]. Xi'an: Xi'an University of Architecture and Technology, 2004.
    [11]
    Wang Changlong, Ni Wen, Qiao Chunyu, et al. Preparation and properties of iron tailings aerated concrete[J]. Journal of Materials Research, 2013,(2):157−162. (王长龙, 倪文, 乔春雨, 等. 铁尾矿加气混凝土的制备和性能[J]. 材料研究学报, 2013,(2):157−162.
    [12]
    (王斌. 铁尾矿加气混凝土的制备及其性能研究[D].沈阳: 沈阳建筑大学, 2015.)

    Wang Bin. Study on preparation and performance of iron tailings aerated concrete[D]. Shenyang: Shenyang Construction University, 2015.
    [13]
    Jiao Xiangke, Zhang Yimin. Activation of a low-reactive and silica-rich tailing and evaluation of its reactivity in geopolymeric reaction[J]. Bulletin of the Chinese Ceramic Society, 2015,24(1):112−119. (焦向科, 张一敏. 低活性高硅尾矿的活化及其在矿物聚合反应中的活性评价[J]. 硅酸盐通报, 2015,24(1):112−119.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (197) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return