Volume 42 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Liu Chonglin, Song Sicheng, Sun Yanhui, An Hanghang, Zhou Lvmin, Liang Longqing, Long Lian. Study on numerical simulation for flow field optimization in argon blowing VD ladle[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 117-123. doi: 10.7513/j.issn.1004-7638.2021.04.020
Citation: Liu Chonglin, Song Sicheng, Sun Yanhui, An Hanghang, Zhou Lvmin, Liang Longqing, Long Lian. Study on numerical simulation for flow field optimization in argon blowing VD ladle[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 117-123. doi: 10.7513/j.issn.1004-7638.2021.04.020

Study on numerical simulation for flow field optimization in argon blowing VD ladle

doi: 10.7513/j.issn.1004-7638.2021.04.020
  • Received Date: 2019-12-09
  • Publish Date: 2021-08-10
  • Taking a steel plant VD ladle furnace as research object and using commercial software ANSYS-Fluent, a 150 t ladle bottom-blown argon gas model was established to simulate different molten steel volumes and two argon-blowing ports with different argon-blowing volume. The flow field and velocity were changed, and the flow of molten steel in ladle furnace after standing for 10 minutes was also considered. All tests monitored the speed of same position at lower part of ladle, and selected the optimal production plan through the orthogonal design method. The results show that variation of molten steel volume and bottom-blown argon flow in ladle within a small range have little effect on flow field and flow velocity of molten steel in ladle. And the influence of steel and argon blowing volume on the internal flow field after standing for 10 minutes is negligible. Excessive argon blowing will result in a larger slag hole opening, which will cause slag entrapment and gas suction. If the blowing amount is too small, lower flow rate of molten steel will result in a longer time for the formation of a stable circulating flow field. Finally, through comparative analysis, it is concluded that when the height of molten steel is 3 590 mm and the flow rate of No. 1 and No. 2 argon ports are both 0.9 m3/h, the comprehensive flow effect in ladle furnace is better, which reduces contamination degree of molten steel and improves production efficiency.
  • loading
  • [1]
    Ren Ying, Zhang Lifeng, Li Yanlong, et al. Numberical simulation of fluid flow and alloy dispersion in an argon gas stirred ladle[J]. Journal of Iron and Steel Research, 2014,26(7):28−34. (任英, 张立峰, 李燕龙, 等. 底吹氩钢包内钢液流动与合金扩散的数值模拟[J]. 钢铁研究学报, 2014,26(7):28−34.
    [2]
    Pirker S, König B, Puttinger S, et al. A glance on turbulence modelling in simulating bubble stirred ladle flow[J]. BHM Berg- und Hüttenmännische Monatshefte, 2013,158(11):472−474.
    [3]
    Liu Y, Liu Y, Ersson M, et al. A review of physical and numerical approaches for the study of gas stirring in ladle metallurgy[J]. Metallurgical and Materials Transactions B, 2019,50(1):555−577. doi: 10.1007/s11663-018-1446-x
    [4]
    Bellot J, Bellot J, De Felice V, et al. Coupling of CFD and PBE calculations to simulate the behavior of an inclusion population in a gas-stirring ladle[J]. Metallurgical and Materials Transactions B, 2014,45(1):13−21. doi: 10.1007/s11663-013-9940-7
    [5]
    Geng D, Lei H, He J. Optimization of mixing time in a ladle with dual plugs[J]. International Journal of Minerals, Metallurgy, and Materials, 2010,17(6):709−714. doi: 10.1007/s12613-010-0378-5
    [6]
    Zheng Shuguo, Zhu Miaoyong. Physica modeling of inclusion behavior in ladle witheccentric bottom blowing argon[J]. Journal of Iron and Steel Research, 2008,(6):18−22. (郑淑国, 朱苗勇. 偏心底吹氩钢包内夹杂物行为的物理模拟[J]. 钢铁研究学报, 2008,(6):18−22.
    [7]
    Yan Huicheng, He Qing, Guo Zheng, et al. Water modeling of slight stirring in ladle[J]. Journal of Iron and Steel Research, 2006,(2):15−20. (颜慧成, 贺庆, 郭征, 等. 钢包弱搅拌水模拟实验研究[J]. 钢铁研究学报, 2006,(2):15−20. doi: 10.3321/j.issn:1001-0963.2006.02.004
    [8]
    Lee H, Yi K. Development of a numerical model to predict areas of plume eye of ladle furnace process[J]. Metals and Materials International, 2015,21(3):511−520. doi: 10.1007/s12540-015-4291-3
    [9]
    Hoang Q N, Ramírez-Argáez M A, Conejo A N, et al. Numerical modeling of liquid–liquid mass transfer and the influence of mixing in gas-stirred ladles[J]. JOM, 2018,70(10):2109−2118. doi: 10.1007/s11837-018-3056-0
    [10]
    Liu W, Tang H, Yang S, et al. Numerical simulation of slag eye formation and slag entrapment in a bottom-blown argon-stirred Ladle[J]. Metallurgical and Materials Transactions B, 2018,49(5):2681−2691. doi: 10.1007/s11663-018-1308-6
    [11]
    Guo Zhenhe, Deng Liqin, Qu Tianpeng. Numerical simulation on fluid flow and mixingbehavior in argon blowing ladle[J]. Steelmaking, 2018,34(3):18−24. (郭振和, 邓丽琴, 屈天鹏. 吹氩钢包内气液两相流动及均混行为的数值模拟[J]. 炼钢, 2018,34(3):18−24.
    [12]
    Pan S M, Chiang J D, Hwang W S. Simulation of large bubble/molten steel interaction for gas-injected ladle[J]. Journal of Materials Engineering and Performance, 1999,8(2):236−244. doi: 10.1361/105994999770347098
    [13]
    Alexiadis A, Gardin P, Domgin J F. Spot turbulence, breakup, and coalescence of bubbles released from a porous plug injector into a gas-stirred ladle[J]. Metallurgical and Materials Transactions B, 2004,35(5):949−956. doi: 10.1007/s11663-004-0089-2
    [14]
    Lou W, Zhu M. Numerical simulation of gas and liquid two-phase flow in gas-stirred systems based on euler–euler approach[J]. Metallurgical and Materials Transactions B, 2013,44(5):1251−1263. doi: 10.1007/s11663-013-9897-6
    [15]
    Li L, Liu Z, Cao M, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–Volume of fluid (VOF) coupled model[J]. JOM, 2015,67(7):1459−1467. doi: 10.1007/s11837-015-1465-x
    [16]
    Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period[J]. Metallurgical and Materials Transactions B, 2001,32(4):733−741. doi: 10.1007/s11663-001-0127-2
    [17]
    Launder B E, Spalding D B. Lectures in mathematical model of turbulence[M]. England. London: Academic Press, 1972.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views (283) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return