Volume 42 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022
Citation: Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022

Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles

doi: 10.7513/j.issn.1004-7638.2021.05.022
  • Received Date: 2021-03-06
  • Publish Date: 2021-10-30
  • A three-phase flow mathematical model of argon/liquid steel/slag for a 180 ton ladle was established by using the multi-phase flow volume method according to design parameters of ladle. The interface behavior and mixing phenomena of three-phase flow in the process of bottom blowing argon in the ladle were simulated by CFD software Fluent. Based on the theory of hydrodynamics, the effects of arrangement of double permeable bricks and flow rate of bottom argon blowing on the velocity field, behavior of steel-slag interface and mixing time in ladle were calculated and analyzed. The results show that in the process of bottom argon blowing, the arrangement of double permeable bricks has a great influence on flow field in ladle, and the flow rate of bottom argon blowing has a great influence on behavior of steel slag interface and mixing time. When the angle between two permeable bricks is 135°, the distance from ladle bottom center is 0.6R, and argon flow rate is 600 L/min, flow field distribution in the ladle is better, which is beneficial to improve stirring efficiency of molten steel.
  • loading
  • [1]
    殷瑞钰. 合理选择二次精炼技术推进高效率低成本“洁净钢平台”建设[J]. 炼钢2010, 26(2): 1−9.

    Yin Ruiyu. Reasonable selection of secondary refining technology to promote the construction of “clean steel platform” with high efficiency and low cost[J]. Steelmaking, 2010, 26(2): 1−9.
    [2]
    Yang Zhaojun, Zeng Yanan, Li Junguo. Numerical simulation on optimization design of constructional and technical parameters of 65 t ladle[J]. Iron Steel Vanadium Titanium, 2016,37(2):112−117. (杨赵军, 曾亚南, 李俊国. 65 t钢包精炼工艺参数优化数值模拟[J]. 钢铁钒钛, 2016,37(2):112−117.
    [3]
    Lou W, Zhu M. Numerical simulations of inclusion behavior and mixing phenomena in gas-stirred ladles with different arrangement of tuyeres[J]. ISIJ International, 2014,54(1):9−18. doi: 10.2355/isijinternational.54.9
    [4]
    蒋星亮. 70 t钢包底吹氩工艺优化及钢—渣界面行为研究[D]. 武汉: 武汉科技大学, 2013.

    Jiang Xingliang. The research for optimization of 70 t ladle bottom argon blowing process and the interfacial behavior of steel-slags[D]. Wuhan: Wuhan University of Science and Technology, 2013.
    [5]
    Zhang Jiangshan, Li Jingshe, Yang Jingbo. Numerical simulation of three-phase fluid flow in a bottom-blown steelmaking ladle[J]. The Chinese Journal of Process Engineering, 2012,12(6):946−951. (张江山, 李京社, 杨静波. 底吹钢包三相流的数值模拟[J]. 过程工程学报, 2012,12(6):946−951.
    [6]
    Li Linmin, Liu Zhongqiu, Cao Maoxue, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–volume of fluid (VOF) coupled model[J]. Jom, 2015,67:1459−1467. doi: 10.1007/s11837-015-1465-x
    [7]
    Li Baokuan, Gu Mingyan, Qi Fengsheng, et al. Modeling of three-phase(gas/molten steel/slag) flows and slag later behavior in an argon gas stirred ladle[J]. Acta Metallurgica Sinica, 2008,44(10):1198−1202. (李宝宽, 顾名言, 齐凤升, 等. 底吹钢包内气/钢液/渣三相流模型及渣层行为的研究[J]. 金属学报, 2008,44(10):1198−1202. doi: 10.3321/j.issn:0412-1961.2008.10.010
    [8]
    Liu H, Qi Z, Xu M. Numerical simulation of fluid flow and interfacial behavior in three‐phase argon‐stirred ladles with one plug and dual plugs[J]. Steel Research International, 2011,82(4):440−458. doi: 10.1002/srin.201000164
    [9]
    Cao, Qing, Nastac, et al. Mathematical investigation of fluid flow, mass transfer, and slag-steel interfacial behavior in gas-stirred ladles[J]. Metallurgical & Materials Transactions B Process Metallurgy & Materials Processing Science, 2018.
    [10]
    崔东静. 精炼炉氩气流量的优化设定与控制[D]. 沈阳: 东北大学, 2009.

    Cui Dongjing. The optimization and control of argon flux for refining furnace[D]. Shenyang: Northeastern University, 2009.
    [11]
    李宝宽, 赫冀成. 炼钢中的计算流体力学[M]. 北京: 冶金工业出版社, 1998.

    Li Baokuan, He Jicheng. Computational fluid dynamics in steelmaking processes[M]. Beijing: Metallurgical Industry Press, 1998.
    [12]
    Asai S, Kawachi M, Muchi I. Mass transfer rate in ladle refining process[J]. Injection Metallurgy, 1983,12:4−9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views (311) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return