Volume 43 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
Ni Wei, Qi Jianling, Fan Heyun. Recent progress on V2O5 nanowire nonwovens preparation and application in advanced electrochemical energy storage devices[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 65-74. doi: 10.7513/j.issn.1004-7638.2022.05.010
Citation: Ni Wei, Qi Jianling, Fan Heyun. Recent progress on V2O5 nanowire nonwovens preparation and application in advanced electrochemical energy storage devices[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 65-74. doi: 10.7513/j.issn.1004-7638.2022.05.010

Recent progress on V2O5 nanowire nonwovens preparation and application in advanced electrochemical energy storage devices

doi: 10.7513/j.issn.1004-7638.2022.05.010
  • Received Date: 2021-12-15
  • Publish Date: 2022-11-01
  • As an important V-based functional material, vanadium pentoxide (V2O5) nanofiber has a significant application in the field of electrochemical energy storage. We herein gave an overview of the one-dimensional (1D) V2O5-based materials for the application of advanced electrochemical energy storage and conversion, especially regarding the advantages and disadvantages of different synthetic methods of V2O5 nanowire nonwovens combined with recent research frontiers. It was considered that reducing the size and increasing the specific surface area will endow V2O5 with better performance in this field. Meanwhile, the development prospect of V2O5 nanofiber cloth in the field of advanced electrochemical energy storage in the future as well as the main development and research direction was provided.
  • loading
  • [1]
    Gao Yongzhang. Vanadium resources and its supply and demand situation in China[J]. China Min Mag, 2019,28(S2):5−10. (高永璋. 中国钒矿资源及供需形势分析[J]. 中国矿业, 2019,28(S2):5−10. doi: 10.12075/j.issn.1004-4051.2019.S2.040
    [2]
    Liu P, Zhu K, Gao Y, et al. Recent progress in the applications of vanadium-based oxides on energy storage: from low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication[J]. Adv Energy Mater, 2017,7:1700547. doi: 10.1002/aenm.201700547
    [3]
    Liu M, Su B, Tang Y, et al. Recent advances in nanostructured vanadium oxides and composites for energy conversion[J]. Adv Energy Mater, 2017,7:1700885. doi: 10.1002/aenm.201700885
    [4]
    Yue Y, Liang H. Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries[J]. Adv Energy Mater, 2017,7:1602545. doi: 10.1002/aenm.201602545
    [5]
    Yao J H, Li Y W, Masse R C, et al. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond[J]. Energy Storage Mater, 2018,11:205−259. doi: 10.1016/j.ensm.2017.10.014
    [6]
    Zhang Y, Lai J, Gong Y, et al. A safe high-performance all-solid-state lithium–vanadium battery with a freestanding V2O5 nanowire composite paper cathode[J]. ACS Appl Mater Interfaces, 2016,8:34309−34316. doi: 10.1021/acsami.6b10358
    [7]
    Rui X, Zhu J, Liu W, et al. Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries[J]. RSC Adv, 2011,1:117−122. doi: 10.1039/c1ra00281c
    [8]
    Wang Y, Zhang H J, Siah K W, et al. One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery[J]. J Mater Chem, 2011,21:10336−10341. doi: 10.1039/c1jm10783f
    [9]
    Zhai T, Liu H, Li H, et al. Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties[J]. Adv Mater, 2010,22:2547−2552. doi: 10.1002/adma.200903586
    [10]
    Xiong C R, Aliev A E, Gnade B, et al. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics[J]. ACS Nano, 2008,2:293−301. doi: 10.1021/nn700261c
    [11]
    Chou S L, Wang J Z, Sun J Z, et al. High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte[J]. Chem Mater, 2008,20:7044−7051. doi: 10.1021/cm801468q
    [12]
    Ding N, Liu S, Feng X, et al. Hydrothermal growth and characterization of nanostructured vanadium-based oxides[J]. Cryst Growth Des, 2009,9:1723−1728. doi: 10.1021/cg800645c
    [13]
    Liu Q, Li Z F, Liu Y, et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries[J]. Nat Commun, 2015,6:6127. doi: 10.1038/ncomms7127
    [14]
    Biette L, Carn F, Maugey M, et al. Macroscopic fibers of oriented vanadium oxide ribbons and their application as highly sensitive alcohol microsensors[J]. Adv Mater, 2005,17:2970−2974. doi: 10.1002/adma.200501368
    [15]
    Rui X, Tang Y, Malyi O I, et al. Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications[J]. Nano Energy, 2016,22:583−593. doi: 10.1016/j.nanoen.2016.03.001
    [16]
    Lausser C, Cölfen H, Antonietti M. Mesocrystals of vanadium pentoxide: a comparative evaluation of three different pathways of mesocrystal synthesis from tactosol precursors[J]. ACS Nano, 2011,5:107−114. doi: 10.1021/nn1017186
    [17]
    Wang P P, Yao Y X, Xu C Y, et al. Self-standing flexible cathode of V2O5 nanobelts with high cycling stability for lithium-ion batteries[J]. Ceram Int, 2016,42:14595−14600. doi: 10.1016/j.ceramint.2016.06.075
    [18]
    Burghard Z, Leineweber A, van Aken P A, et al. Hydrogen-bond reinforced vanadia nanofiber paper of high stiffness[J]. Adv Mater, 2013,25:2468−2473. doi: 10.1002/adma.201300135
    [19]
    Armer C F, Yeoh J S, Li X, et al. Electrospun vanadium-based oxides as electrode materials[J]. J Power Sources, 2018,395:414−429. doi: 10.1016/j.jpowsour.2018.05.076
    [20]
    倪伟. 高纯五氧化二钒纳米纤维无纺布的制备方法: 中国专利, CN113481656A[P].2021-10-08.

    Ni Wei. Preparation method of high-purity vanadium pentoxide nanowire non-woven fabrics: China Patent, CN113481656A[P].2021-10-08 .
    [21]
    倪伟. 一种异形氧化钒纳米纤维及其聚集体的低成本室温快速批量制备方法、设备: 中国专利, CN114293321A[P]. 2022-04-08.

    Ni Wei. Low-cost, room-temperature, rapid and large-scale preparation method and equipment for special-shaped vanadium oxide nanowires and their assemblages: China Patent, CN114293321A[P]. 2022-04-08.
    [22]
    Knöller A, Lampa C P, Cube Fv, et al. Strengthening of ceramic-based artificial nacre via synergistic interactions of 1D vanadium pentoxide and 2D graphene oxide building blocks[J]. Sci Rep, 2017,7:40999. doi: 10.1038/srep40999
    [23]
    Wicklein B, Diem A M, Knöller A, et al. Dual-fiber approach toward flexible multifunctional hybrid materials[J]. Adv Funct Mater, 2018,28:1704274. doi: 10.1002/adfm.201704274
    [24]
    Knöller A, Kilper S, Diem A M, et al. Ultrahigh damping capacities in lightweight structural materials[J]. Nano Lett, 2018,18:2519−2524. doi: 10.1021/acs.nanolett.8b00194
    [25]
    Knöller A, Runčevski T, Dinnebier R E, et al. Cuttlebone-like V2O5 nanofibre scaffolds – advances in structuring cellular solids[J]. Sci Rep, 2017,7:42951. doi: 10.1038/srep42951
    [26]
    Diem A M, Bill J, Burghard Z. Creasing highly porous V2O5 scaffolds for high energy density aluminum-ion batteries[J]. ACS Appl Energy Mater, 2020,3:4033−4042. doi: 10.1021/acsaem.0c00455
    [27]
    Sajitha S, Aparna U, Deb B. Ultra-thin manganese dioxide-encrusted vanadium pentoxide nanowire mats for electrochromic energy storage applications[J]. Adv Mater Interfaces, 2019,6:1901038. doi: 10.1002/admi.201901038
    [28]
    Mai L, Xu X, Xu L, et al. Vanadium oxide nanowires for Li-ion batteries[J]. J Mater Res, 2011,26:2175−2185. doi: 10.1557/jmr.2011.171
    [29]
    Zhou Y, Pan Q, Zhang J, et al. Insights into synergistic effect of acid on morphological control of vanadium oxide: toward high lithium storage[J]. Adv Sci, 2021,8:2002579. doi: 10.1002/advs.202002579
    [30]
    Qin X, Wang X, Sun J, et al. Polypyrrole wrapped V2O5 nanowires composite for advanced aqueous zinc-ion batteries[J]. Front Energy Res, 2020,8:199. doi: 10.3389/fenrg.2020.00199
    [31]
    Chen K, Zhang G, Xiao L, et al. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium–sulfur batteries[J]. Small Methods, 2021,5:2001056. doi: 10.1002/smtd.202001056
    [32]
    Guo Y, Zhang Y, Zhang Y, et al. Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries[J]. J Mater Chem A, 2018,6:19358−19370. doi: 10.1039/C8TA06610H
    [33]
    Li H, He J, Cao X, et al. All solid-state V2O5-based flexible hybrid fiber supercapacitors[J]. J Power Sources, 2017,371:18−25. doi: 10.1016/j.jpowsour.2017.10.031
    [34]
    Dong J, Jiang Y, Wei Q, et al. Strongly coupled pyridine-V2O5·nH2O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors[J]. Small, 2019,15:1900379. doi: 10.1002/smll.201900379
    [35]
    Leroy C M, Achard M F, Babot O, et al. Designing nanotextured vanadium oxide-based macroscopic fibers:   application as alcoholic sensors[J]. Chem Mater, 2007,19:3988−3999. doi: 10.1021/cm0711966
    [36]
    Qi X, Lu Z, You E M, et al. Nanocombing effect leads to nanowire-based, in-plane, uniaxial thin films[J]. ACS Nano, 2018,12:12701−12712. doi: 10.1021/acsnano.8b07671
    [37]
    Gu G, Schmid M, Chiu P W, et al. V2O5 nanofibre sheet actuators[J]. Nat Mater, 2003,2:316−319. doi: 10.1038/nmat880
    [38]
    Myung S, Lee M, Kim G T, et al. Large-scale “surface-programmed assembly” of pristine vanadium oxide nanowire-based devices[J]. Adv Mater, 2005,17:2361−2364. doi: 10.1002/adma.200500682
    [39]
    Mukherjee A, Ardakani H A, Yi T, et al. Direct characterization of the Li intercalation mechanism into α-V2O5 nanowires using in-situ transmission electron microscopy[J]. Appl Phys Lett, 2017,110:213903. doi: 10.1063/1.4984111
    [40]
    De Jesus L R, Horrocks G A, Liang Y, et al. Mapping polaronic states and lithiation gradients in individual V2O5 nanowires[J]. Nat Commun, 2016,7:12022. doi: 10.1038/ncomms12022
    [41]
    Aliahmad N, Liu Y, Xie J, et al. V2O5/graphene hybrid supported on paper current collectors for flexible ultrahigh-capacity electrodes for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2018,10:16490−16499. doi: 10.1021/acsami.8b02721
    [42]
    Huang X, Rui X, Hng H H, et al. Vanadium pentoxide-based cathode materials for lithium-ion batteries: morphology control, carbon hybridization, and cation doping[J]. Part Part Syst Charact, 2015,32:276−294. doi: 10.1002/ppsc.201400125
    [43]
    Zhang Y, Wang Y, Xiong Z, et al. V2O5 nanowire composite paper as a high-performance lithium-ion battery cathode[J]. ACS Omega, 2017,2:793−799. doi: 10.1021/acsomega.7b00037
    [44]
    Seng K H, Liu J, Guo Z P, et al. Free-standing V2O5 electrode for flexible lithium ion batteries[J]. Electrochem Commun, 2011,13:383−386. doi: 10.1016/j.elecom.2010.12.002
    [45]
    Wang L, Shu T, Guo S, et al. Fabricating strongly coupled V2O5@PEDOT nanobelts/graphene hybrid films with high areal capacitance and facile transferability for transparent solid-state supercapacitors[J]. Energy Storage Mater, 2020,27:150−158. doi: 10.1016/j.ensm.2020.01.026
    [46]
    Gittleson F S, Hwang D, Ryu W H, et al. Ultrathin nanotube/nanowire electrodes by spin–spray layer-by-layer assembly: a concept for transparent energy storage[J]. ACS Nano, 2015,9:10005−10017. doi: 10.1021/acsnano.5b03578
    [47]
    Gu S C, Wang H L, Wu C, et al. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery[J]. Energy Storage Mater, 2017,6:9−17. doi: 10.1016/j.ensm.2016.09.001
    [48]
    Tepavcevic S, Liu Y, Zhou D, et al. Nanostructured layered cathode for rechargeable Mg-ion batteries[J]. ACS Nano, 2015,9:8194−8205. doi: 10.1021/acsnano.5b02450
    [49]
    Moretti A, Passerini S. Bilayered nanostructured V2O5·nH2O for metal batteries[J]. Adv Energy Mater, 2016,6:1600868. doi: 10.1002/aenm.201600868
    [50]
    Diem A M, Fenk B, Bill J, et al. Binder-free V2O5 cathode for high energy density rechargeable aluminum-ion batteries[J]. Nanomaterials, 2020,10:247. doi: 10.3390/nano10020247
    [51]
    Chen Z, Augustyn V, Wen J, et al. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites[J]. Adv Mater, 2011,23:791−795. doi: 10.1002/adma.201003658
    [52]
    Chen Z, Augustyn V, Jia X, et al. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites[J]. ACS Nano, 2012,6:4319−4327. doi: 10.1021/nn300920e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (98) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return