Volume 43 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
Zhang Huaiju, Wang Shuai, Zheng Kaihong, Luo Tiegang. Study on microstructure and properties of TiC-based high manganese steel bonded cemented carbide prepared by spark plasma sintering[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 75-80. doi: 10.7513/j.issn.1004-7638.2022.05.011
Citation: Zhang Huaiju, Wang Shuai, Zheng Kaihong, Luo Tiegang. Study on microstructure and properties of TiC-based high manganese steel bonded cemented carbide prepared by spark plasma sintering[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 75-80. doi: 10.7513/j.issn.1004-7638.2022.05.011

Study on microstructure and properties of TiC-based high manganese steel bonded cemented carbide prepared by spark plasma sintering

doi: 10.7513/j.issn.1004-7638.2022.05.011
  • Received Date: 2022-06-01
  • Publish Date: 2022-11-01
  • Cemented carbides with different TiC mass fractions were prepared by spark plasma sintering (SPS) to reveal the influence mechanism of microstructure on hardness and wear behavior, and to explore the possibility of cemented carbides with high TiC mass fraction as wear-resistant materials. The results show that the sample with compact microstructure can be obtained by SPS sintering. The porosity of cemented carbide with 55% TiC mass fraction is 0.07%, and the porosity of cemented carbide increases with the increase of TiC mass fraction. In the sintering process, Mo participates in the formation of complex core-shell structure around TiC particles, and Ni distributes in the metal bonded phase. The large size TiC particles keeps their original morphology, while the small size TiC particles spheroidizes gradually and the particle enrichment area appears. The hardness of cemented carbide increases with the increase of TiC mass fraction. The microhardness (HV) of cemented carbide with 70% TiC mass fraction is 559 higher than that with 55% TiC mass fraction. The friction and wear tests show that the TiC particles are broken and spalling under stress, and the cemented carbide with 55% TiC mass fraction has the highest wear rate and the worst wear resistance. The cemented carbide with 70% TiC mass fraction has the lowest wear rate and the best wear resistance.
  • loading
  • [1]
    Lu Qingzhong, Zhang Furun, Yu Lixin. The condition and trend of Ti(C, N) cermet[J]. Journal of Wuhan Institute of Science and Technology, 2002,(5):42−46. (陆庆忠, 张福润, 余立新. Ti(C, N)基硬质合金的研究现状及发展趋势[J]. 武汉科技学院学报, 2002,(5):42−46.
    [2]
    Prava Dalai R, Das S, Das K. Development of TiC reinforced austenitic manganese steel[J]. Canadian Metallurgical Quarterly, 2014,53(3):317−325. doi: 10.1179/1879139514Y.0000000140
    [3]
    Ning Jiapei, Zheng Kaihong, Wang Juan, et al. Microstructure and abrasive wear properties of TiC-reinforced hadfield steel matrix composites[J]. Rare Metal Materials and Engineering, 2020,49(7):2407−2416. (宁嘉沛, 郑开宏, 王娟, 等. TiC增强高锰钢基复合材料的组织与磨料磨损性能[J]. 稀有金属材料与工程, 2020,49(7):2407−2416.
    [4]
    熊拥军, 李溪滨, 刘如铁, 等. 新型TiC钢结硬质合金致密化技术[J]. 中南大学学报(自然科学版), 2009, 40(6): 1563-1567.

    Xiong Yongjun, Li Xibin, Liu Rutie, et al. Densification processing of a new steel bonded titanium carbide[J]. Journal of Central South University (Science and Technology), 2009, 40(6): 1563-1567.
    [5]
    Zhang M, Yang Q, Xiong W, et al. Effect of vacuum-sintering temperature on magnetic and mechanical properties of TiC-TiN-Ni-Mo-C cermets[J]. Metallurgical and Materials Transactions A, 2018,49(8):3550−3555. doi: 10.1007/s11661-018-4659-3
    [6]
    Zheng Y, Wang S, You M, et al. Fabrication of nanocomposite Ti(C, N)-based cermet by spark plasma sintering[J]. Materials Chemistry and Physics, 2005,92(1):64−70. doi: 10.1016/j.matchemphys.2004.12.031
    [7]
    Han C, Kong M. Fabrication and properties of TiC-based cermet with intra/intergranular microstructure[J]. Materials & Design, 2009,30(4):1205−1208.
    [8]
    Zhou S, Zhao W, Xiong W. Microstructure and properties of the cermets based on Ti(C, N)[J]. Int. J. Refract Met. Hard Mater., 2009,27:26−32. doi: 10.1016/j.ijrmhm.2008.01.011
    [9]
    Xiong J, Guo Z X, Shen B L, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC 0.7 N 0.3 cermet[J]. Mater. Design., 2007,28(5):1689−1694. doi: 10.1016/j.matdes.2006.03.005
    [10]
    Stewart T L, Plucknett K P. The effects of Mo2C additions on the microstructure and sliding wear of TiC0.3N0.7-Ni3Al cermets[J]. Int. J. Refract. Met. Hard Mater., 2015,50:227−239. doi: 10.1016/j.ijrmhm.2015.01.013
    [11]
    Liu C, Lin N, He Y H. Influence of Mo2C and TaC additions on the microstructure and mechanical properties of Ti(C, N)-based cermets[J]. Ceram. Int., 2016,42(2):3569−3574. doi: 10.1016/j.ceramint.2015.10.168
    [12]
    Wan W C, Xiong J, Li Y H, et al. Erosion-corrosion behavior of Ti(C, N)-based cermets containing different secondary carbides[J]. Int. J. Refract. Met. Hard Mater., 2017,66:180−187. doi: 10.1016/j.ijrmhm.2017.03.018
    [13]
    Shin S G, Lee J H. Effect of carbide additions on grain growth in TiC-Ni cermets[J]. Met. Mater. Int., 2006,12(1):57−62. doi: 10.1007/BF03027524
    [14]
    Li Y, Hu J, Wang H, et al. Study of TiC/Ni3Al composites by laser ignited self-propagating high-temperature synthesis (LISHS)[J]. Chemical Engineering Journal, 2008,140(1-3):621−625. doi: 10.1016/j.cej.2007.11.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (99) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return