Volume 43 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
Feng Kai, Li Ying, Zou Ming, Yuan Jun, Ding Yushi. Effect of electroplating time and temperature on hydrogen diffusion coefficient of U78CrV steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 153-157. doi: 10.7513/j.issn.1004-7638.2022.05.022
Citation: Feng Kai, Li Ying, Zou Ming, Yuan Jun, Ding Yushi. Effect of electroplating time and temperature on hydrogen diffusion coefficient of U78CrV steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 153-157. doi: 10.7513/j.issn.1004-7638.2022.05.022

Effect of electroplating time and temperature on hydrogen diffusion coefficient of U78CrV steel

doi: 10.7513/j.issn.1004-7638.2022.05.022
  • Received Date: 2022-03-01
  • Publish Date: 2022-11-01
  • Hydrogen can cause hydrogen embrittlement of steel, resulting in a decrease in the material's mechanical properties. The harmful effect of hydrogen atoms on steel is caused by diffusion. Therefore, understanding the diffusion behavior of hydrogen atoms in steel is significant in preventing hydrogen bubbling and embrittlement. In this paper, electrochemical hydrogen permeation technology is used, a constant cathode current is applied, and the hydrogen permeation parameters of U78CrV steel are studied by changing the sample plating time and test temperature, respectively. The influence of different plating times and test temperatures on the hydrogen diffusion coefficient of U78CrV steel is analyzed. The research results show that too short and too long electroplating time will reduce the anodic polarization current and affect the ionization of hydrogen atoms to form hydrogen ions. When the electroplating time is 360 seconds, the nickel layer formed has the best effect. The increase in the test temperature will increase the hydrogen permeability and diffusion coefficient. The activation energy of hydrogen diffusion in U78CrV steel is 19371 J/mol.
  • loading
  • [1]
    Zhang Jianliang, Xiao Qing'an, Xiao Lei, et al. Development and steelmaking application of magnesium containing alkaline earth metal composite alloy[J]. Ferroalloy, 2001,4(159):1−7. (张建良, 肖清安, 肖雷, 等. 含镁碱土金属复合合金的开发与炼钢应用[J]. 铁合金, 2001,4(159):1−7.
    [2]
    Wang Zhen, Liu Jing, Zhang Shiqi, et al. Effect of strain rate on hydrogen embrittlement sensitivity of hydrogen precharged DP780 steel[J]. Chinese Journal of Corrosion and Protection, 2022,42(1):106−112. (王贞, 刘静, 张施琦, 等. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022,42(1):106−112. doi: 10.11902/1005.4537.2020.259
    [3]
    Saini N, Pandey C, Mahapatra M M. Effect of diffusible hydrogen content on embrittlement of P92 steel[J]. International Journal of Hydrogen Energy, 2017,42(27):17328−17338. doi: 10.1016/j.ijhydene.2017.05.214
    [4]
    Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review[J]. International Journal of Hydrogen Energy, 2018,43(46):21603−21616. doi: 10.1016/j.ijhydene.2018.09.201
    [5]
    崔国文. 缺陷、扩散与烧结[M]. 北京: 清华大学出版社, 1990.

    Cui Guowen. Defects, diffusion and sintering [M]. Beijing: Tsinghua University Press, 1990.
    [6]
    Devanathan M A V, Stachurski M. The adsorption and diffusion of electrolytic hydrogen in palladium[C]//Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962, 270(1340): 90-102.
    [7]
    Haq A J, Muzaka K, Dunne D P, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels[J]. International Journal of Hydrogen Energy, 2013,38(5):2544−2556. doi: 10.1016/j.ijhydene.2012.11.127
    [8]
    褚武杨. 氢损伤和滞后断裂[M]. 北京: 冶金工业出版社, 1988.

    Chu Wuyang. Hydrogen damage and delayed fracture [M]. Beijing: Metallurgical Industry Press, 1988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (66) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return