Volume 43 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
Zhang Xuefeng, Chen Min, Liu Xuyang, Gao Youzhi, Wei Liangxiao, Cai Junhao, Ni Zijie, Chen Xincai. Effect of heat treatment on microstructure and properties of Ti84Al11FeMo4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 66-70. doi: 10.7513/j.issn.1004-7638.2022.06.010
Citation: Zhang Xuefeng, Chen Min, Liu Xuyang, Gao Youzhi, Wei Liangxiao, Cai Junhao, Ni Zijie, Chen Xincai. Effect of heat treatment on microstructure and properties of Ti84Al11FeMo4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 66-70. doi: 10.7513/j.issn.1004-7638.2022.06.010

Effect of heat treatment on microstructure and properties of Ti84Al11FeMo4 titanium alloy

doi: 10.7513/j.issn.1004-7638.2022.06.010
  • Received Date: 2022-06-21
  • Publish Date: 2023-01-13
  • A novel two-phase titanium alloy of Ti84Al11FeMo4 was designed based on d-electron theory and the phase composition as a function of temperature was analyzed. Combined with the thermodynamic calculation results, the evolution relationship between the microstructure and mechanical properties of titanium alloys at different aging temperatures of 700 ℃, 770 ℃ and 850 ℃ was studied, respectively. The results show that the amount of β phase in the microstructure of Ti84Al11FeMo4 titanium alloy gradually increases with the increase of aging temperature. When the aging temperature is increased to 850 ℃, the amount of β precipitates reaches the maximum, and a large number of small-sized β phases are distributed among the coarse β phases. Ti84Al11FeMo4 titanium alloy exhibits different mechanical properties after aging treatment at different temperatures. The compressive strength of titanium alloy could be significantly improved after aging at 700 ℃ and 770 ℃, while the high strength and ductility could be simultaneously obtained after aging at 850 ℃.
  • loading
  • [1]
    Oh J M, Park C H, Yeom J T, et al. High strength and ductility in low-cost Ti-Al-Fe-Mn alloy exhibiting transformation-induced plasticity[J]. Materials Science and Engineering:A, 2020,772:138813. doi: 10.1016/j.msea.2019.138813
    [2]
    Zhu W, Lei J, Tan C, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility[J]. Materials & Design, 2019,168:107640.
    [3]
    Das J, Gogia A K, Satyanarayana D V V. Effect of iron and nickel impurities on creep and tensile behaviour of Ti-24Al-20Nb-0.5Mo alloy[J]. Materials Science and Engineering:A, 2008,496(1-2):1−8. doi: 10.1016/j.msea.2008.07.014
    [4]
    Fan J, Li J, Zhang Y, et al. Formation and crystallography of nano/ultrafine-trimorphic structure in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe processed by dynamic deformation at low temperature[J]. Materials Characterization, 2017,130:149−155. doi: 10.1016/j.matchar.2017.06.005
    [5]
    Fan J, Kou H, Zhang Y, et al. Formation of slip bands and microstructure evolution of Ti-5Al-5Mo-5V-3Cr-0.5Fe alloy during warm deformation process[J]. Journal of Alloys and Compounds, 2019,770:183−193. doi: 10.1016/j.jallcom.2018.08.097
    [6]
    Wang W L, Wang X L, Mei W, et al. Role of grain size in tensile behavior in twinning-induced plasticity β Ti-20V-2Nb-2Zr alloy[J]. Materials Characterization, 2016,120:263−267. doi: 10.1016/j.matchar.2016.09.016
    [7]
    Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Materialia, 2013,61(17):6406−6417. doi: 10.1016/j.actamat.2013.07.019
    [8]
    Zafari A, Xia K. Stress induced martensitic transformation in metastable β Ti-5Al-5Mo-5V-3Cr alloy: Triggering stress and interaction with deformation bands[J]. Materials Science and Engineering:A, 2018,724:75−79. doi: 10.1016/j.msea.2018.03.070
    [9]
    Dong R, Li J, Kou H, et al. Precipitation behavior of α phase during aging treatment in a β-quenched Ti-7333[J]. Materials Characterization, 2018,140:275−280. doi: 10.1016/j.matchar.2018.04.008
    [10]
    Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability[J]. Journal of Materials Science & Technology, 2018,34(12):2507−2514.
    [11]
    Ren L, Xiao W, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment[J]. Materials Science and Engineering:A, 2018,711:553−561. doi: 10.1016/j.msea.2017.11.029
    [12]
    Šmilauerová J, Janeček M, Harcuba P, et al. Ageing response of sub-transus heat treated Ti-6.8Mo-4.5Fe-1.5Al alloy[J]. Journal of Alloys and Compounds, 2017,724:373−380. doi: 10.1016/j.jallcom.2017.07.036
    [13]
    Kim Y K, Park S H, Yu J H, et al. Improvement in the high-temperature creep properties via heat treatment of Ti-6Al-4V alloy manufactured by selective laser melting[J]. Materials ence & Engineering A, 2018,715:33−40.
    [14]
    Lee K H, Yang S Y, Yang J G. Optimization of heat-treatment parameters in hardening of titanium alloy Ti-6Al-4V by using the Taguchi method[J]. International Journal of Advanced Manufacturing Technology, 2017,90:753−761. doi: 10.1007/s00170-016-9433-3
    [15]
    Najafizadeh M, Bahadoran A, Bozorg M, et al. Microstructures and mechanical properties of high strength Ti-XAl-2Fe-3Cu alloys fabricated by powder compact extrusion[J]. Journal of Alloys and Compounds, 2021,(1):161136.
    [16]
    Sui S, Chew Y, Hao Z, et al. Effect of cyclic heat treatment on the microstructure and mechanical properties of laser aided additive manufacturing Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Advanced Powder Materials, 2022,1:100002. doi: 10.1016/j.apmate.2021.09.002
    [17]
    Li D, Hui S X, Ye W J, et al. Microstructure and mechanical properties of a new high-strength and high-toughness titanium alloy[J]. Rare Metals, 2016:1−7. doi: 10.1007/s12598-016-0722-7
    [18]
    Li C L, Hong J K, Narayana P L, et al. Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment[J]. Materials Science and Engineering A, 2020,799:140367.
    [19]
    Yumak N, Aslanta K. Effect of heat treatment procedure on mechanical properties of Ti-15V-3Al-3Sn-3Cr metastable β titanium alloy[J]. Journal of Materials Engineering and Performance, 2021,30(2):1066−1074. doi: 10.1007/s11665-020-05445-x
    [20]
    Kurdi A, Basak A K. Micro-mechanical behaviour of selective laser melted Ti6Al4V under compression[J]. Materials Science & Engineering A, 2021,826:141975.
    [21]
    Elkhateeb M G, Shin Y C. Analysis of the effects of microstructure heterogeneity on themechanical behavior of additively manufactured Ti6Al4V using mechanics of structure genome[J]. Materials and Design, 2021,204:109643. doi: 10.1016/j.matdes.2021.109643
    [22]
    Yuan B G, Du J F, Zhang X X, et al. Microstructures and room-temperature compressive properties of Ti6Al4V alloy processed by continuous multistep hydrogenation treatment[J]. International Journal of Hydrogen Energy, 2020,45(46):25567−25579. doi: 10.1016/j.ijhydene.2020.06.265
    [23]
    Zhao Y Q, Zhou L. Current research situation of titanium alloys in China[J]. Materials Research and Application, 2005,15(S01):82−91.
    [24]
    Zhang X, Liu H Y, Che C, et al. Development status of low cost titanium alloy processing technology[J]. China Foundry, 2021,70(10):1141−1148.
    [25]
    Kong J T, Hu R, Kou H C, et al. Alloy design of low-density Nb-Ti superalloy based on d-electrons theory[J]. Rare Metal Materials and Engineering, 2015,44(5):1119−1123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (128) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return