Volume 43 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
Wang Andong, Wang Zhitian, Xiang Zhilei, Han Jingyu, Zhou Zongyi, Shen Gaoliang, Huang Jingcun, Chen Ziyong. Effects of carbon microalloying on microstructure and mechanical properties of low-cost Ti-4.5Al-3.5Zr-2Fe titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 71-77. doi: 10.7513/j.issn.1004-7638.2022.06.011
Citation: Wang Andong, Wang Zhitian, Xiang Zhilei, Han Jingyu, Zhou Zongyi, Shen Gaoliang, Huang Jingcun, Chen Ziyong. Effects of carbon microalloying on microstructure and mechanical properties of low-cost Ti-4.5Al-3.5Zr-2Fe titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 71-77. doi: 10.7513/j.issn.1004-7638.2022.06.011

Effects of carbon microalloying on microstructure and mechanical properties of low-cost Ti-4.5Al-3.5Zr-2Fe titanium alloy

doi: 10.7513/j.issn.1004-7638.2022.06.011
  • Received Date: 2022-05-04
  • Publish Date: 2023-01-13
  • Low-cost Ti-4.5Al-3.5Zr-2Fe titanium alloys with different carbon content of 0, 0.1%, 0.15% and 0.3% were prepared in a water-cooled copper crucible vacuum induction levitation melting furnace. The effects of carbon microalloying on the as-cast microstructure and mechanical properties of the titanium alloys were investigated. The results show that with the introduction of carbon element, the original β grain and α lamellar width are refined to a certain extent, and the as-cast solidification microstructure of the alloy is gradually transformed from Widmanstätten microstructure to basket-weave microstructure, and TiC precipitates at grain boundary. Ti-4.5Al-3.5Zr-2Fe-0.1C alloy has the best comprehensive mechanical properties, with a tensile strength and yield strength of 979 MPa and 920 MPa, respectively, and an elongation of 5.4%.
  • loading
  • [1]
    Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components[J]. Metals - Open Access Metallurgy Journal, 2020,10(6):705.
    [2]
    Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996,213(1-2):103−114. doi: 10.1016/0921-5093(96)10233-1
    [3]
    Huang Haiguang, Xiao Han, Xiong Hancheng, et al. Development and application on low cost production technology of titanium materials[J]. Yunnan Metallurgy, 2020,49(6):59−67. (黄海广, 肖寒, 熊汉城, 等. 钛材低成本生产技术的开发和应用[J]. 云南冶金, 2020,49(6):59−67. doi: 10.3969/j.issn.1006-0308.2020.06.013
    [4]
    杜赵新. 新型高强β钛合金的热处理和微合金化以及高温变形行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Du Zhaoxin. Heat treatment and microalloying and high temperature deformati, on behavior of new beta high strength titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014.
    [5]
    Tan Qiming, Sui Nan. Research and development of particle reinforced titanium matrix composites[J]. New Materials Industry, 2019,(1):59−64. (谭启明, 隋楠. 颗粒增强钛基复合材料的研究与进展[J]. 新材料产业, 2019,(1):59−64. doi: 10.19599/j.issn.1008-892x.2019.01.014
    [6]
    刘诚. TC4-DT钛合金热变形行为及显微组织演变的模拟研究[D]. 南昌: 南昌航空大学, 2015.

    Liu Cheng. Simulation study on hot deformation behavior and microstructure evolution of TC4-DT titanium alloy[D]. Nanchang: Nanchang Hangkong University, 2015.
    [7]
    Zhang Hongju, Zhang Donghui, Li Pu, et al. Testing methods for titanium alloy phase transition point[J]. Hot Working Technology, 2013,42(10):89−92. (张红菊, 张东晖, 李璞, 等. 钛合金相转变点检测方法[J]. 热加工工艺, 2013,42(10):89−92. doi: 10.14158/j.cnki.1001-3814.2013.10.028
    [8]
    Tian Fei, Zeng Weidong, Ma Xiong, et al. Measurement of beta transus temperature of BT25 titanium alloy by physical analysis and metallographic observation methods[J]. Journal of Materials and Heat Treatment, 2011,32(5):5. (田飞, 曾卫东, 马雄, 等. 物理分析法与金相法测定BT25钛合金相变点[J]. 材料热处理学报, 2011,32(5):5. doi: 10.13289/j.issn.1009-6264.2011.05.002
    [9]
    Liu Shibing, Lou Yanchun, Zhao Jun, et al. Effect of casting process on microstructure and properties of titanium alloy Ti5Al2.5Sn ELI[J]. Rare Metal Materials and Engineering, 2021,50(2):575−580. (刘时兵, 娄延春, 赵军, 等. 铸造工艺对钛合金Ti5Al2.5Sn ELI铸态组织及性能的影响[J]. 稀有金属材料与工程, 2021,50(2):575−580.
    [10]
    Hu D, Johnson T P, Loretto M H. Titanium precipitation in substoichiometric TiC particles[J]. Scripta Metallurgica et Materialia, 1994,30:8(8):1015−1020.
    [11]
    Lu W J, Zhang D, Zhang X N, et al. Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB∶TiC=1∶1) composites prepared by common casting technique[J]. Materials Science & Engineering A, 2001,311(1-2):142−150.
    [12]
    Min W A, Hy B, Zs C, et al. Microstructural evolution, mechanical properties and wear behavior of in-situ TiC-reinforced Ti matrix composite coating by induction cladding[J]. Surface and Coatings Technology, 2021,412:127048. doi: 10.1016/j.surfcoat.2021.127048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (105) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return