Volume 43 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
Guo Zhihong, Shi Saichao, Wang Qi, Ma Guojin, Wang Genji, Zhu Liguang. Thermodynamic analysis of inclusion control in Mg-Al-Ti system oxide metallurgy technology[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 126-137. doi: 10.7513/j.issn.1004-7638.2022.06.019
Citation: Guo Zhihong, Shi Saichao, Wang Qi, Ma Guojin, Wang Genji, Zhu Liguang. Thermodynamic analysis of inclusion control in Mg-Al-Ti system oxide metallurgy technology[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 126-137. doi: 10.7513/j.issn.1004-7638.2022.06.019

Thermodynamic analysis of inclusion control in Mg-Al-Ti system oxide metallurgy technology

doi: 10.7513/j.issn.1004-7638.2022.06.019
  • Received Date: 2022-03-31
  • Publish Date: 2023-01-13
  • The oxide metallurgy technology with the low aluminum condition is carried out in marine steel and further expands the adjustment range of alloy compositions, which is beneficial to promote the effective inclusion of inducing acicular ferrite. This research has a significant potential application to improve the toughness of heat-affected zones in high-heat input welding. Thermodynamic equilibrium calculations between liquid steel and inclusion are based on EH420 steel using FactSage software. The effects of coupling changes of the Mg-Al-Ti deoxidation system and oxygen content on the types, conditions, and amounts of inclusions precipitated in steel were systematically analyzed. Equilibrium experiments are designed to confirm the validity of thermodynamic calculations. This study provides theoretical guidance to control inclusion in high heat input welding for EH420 marine steel. The results recommended controlling the Mg, Al, and Ti in steel are 0.0020%, 0.0080%~0.010%, and 0.010%~0.020%, respectively. On this basis, Mg-Al-Ti-O composite inclusion + MgO inclusion are formed when the content of T.O. is 0.0030%. The composite inclusion of Mg-Al-Ti-O is formed separately, with the T.O. content at 0.0060%.
  • loading
  • [1]
    Wu Xu, Huang Xi, Wang Zemin, et al. Effect of microwave quenching on gradient structure and properties of low-alloyed ship plate steel[J]. Heat Treatment of Metals, 2021,46(7):144−148. (吴旭, 黄曦, 王泽民, 等. 微波淬火对低合金船板钢梯度组织结构及性能的影响[J]. 金属热处理, 2021,46(7):144−148. doi: 10.13251/j.issn.0254-6051.2021.07.027
    [2]
    Qin Shuyang, Liu Zengxun, Wang Shuoming, et al. Analysis of IAF nucleation and grain refinement behavior in EH460 steel[J]. Iron Steel Vanadium Titanium, 2018,39(1):143−147. (秦书洋, 刘增勋, 王硕明, 等. EH460钢中IAF形核及其细化晶粒行为分析[J]. 钢铁钒钛, 2018,39(1):143−147. doi: 10.7513/j.issn.1004-7638.2018.01.025
    [3]
    Xiao Na, Xu Xiaoning, Wang Yimin, et al. Effect of tempering temperature on microstructure, strength and toughness of EH460 grade medium and heavy ship plate steel[J]. Heat Treatment of Metals, 2021,46(5):81−86. (肖娜, 徐晓宁, 王益民, 等. 回火温度对EH460级船用中厚钢板组织与强韧性的影响[J]. 金属热处理, 2021,46(5):81−86. doi: 10.13251/j.issn.0254-6051.2021.05.013
    [4]
    Xi Xiaojun, Li Shaoying, Yang Shufeng, et al. Effect of adding yttrium on precipitation behaviors of inclusions in E690 ultra high strength offshore platform steel[J]. High Temperature Materials and Processes, 2020,39(1):510−519. doi: 10.1515/htmp-2020-0089
    [5]
    Wang Dong, Zhang Peng, Peng Xingdong, et al. Comparison of microstructure and mechanical properties of high strength and toughness ship plate steel[J]. Materials, 2021,14(19):5886−5886. doi: 10.3390/ma14195886
    [6]
    Shi Zhongran, Zhao Qingkai, Liu Denghui, et al. Effect of heat welding on microstructure and mechanical property of welded joint in V-N-Ti and Nb-Ti ship buliding steel[J]. China Metallurgy, 2021,31(1):25−30. (师仲然, 赵庆凯, 刘登辉, 等. 线能量对V-N-Ti和Nb-Ti船板焊接接头组织性能的影响[J]. 中国冶金, 2021,31(1):25−30. doi: 10.13228/j.boyuan.issn1006-9356.20200323
    [7]
    Wu Xiaoyan, Xiao Pengcheng, Wu Shujing, et al. Effect of molybdenum on the impact toughness of heat-affected zone in high-strength low-alloy steel[J]. Materials, 2021,14(6):1430−1430. doi: 10.3390/ma14061430
    [8]
    Li Yuqian, Du Qiming, Mei Donggui, et al. Study on production technology and high heat input welding property of Q345 grade Ti-oxide metallurgy steel[J]. Iron Steel Vanadium Titanium, 2018,39(6):155−161. (李玉谦, 杜琦铭, 梅东贵, 等. Q345级钛氧化物冶金钢生产工艺及大线能量焊接性能研究[J]. 钢铁钒钛, 2018,39(6):155−161. doi: 10.7513/j.issn.1004-7638.2018.06.025
    [9]
    Xie Xu, Zhao Tan, Zhao Heming, et al. Heterogeneous microstructure-induced mechanical responses in various sub-zones of EH420 shipbuilding steel welded joint under high heat input electro-gas welding[J]. Acta Metallurgica Sinica(English Letters), 2021,34(10):1427−1433. doi: 10.1007/s40195-021-01245-x
    [10]
    Yuan Hang, Yang Shufeng, Li Jingshe, et al. Optimising inclusion and toughening the heat-affected zone of ship plate steel with MgO nanoparticles[J]. Materials Science and Technology, 2020,36(14):1574−1586. doi: 10.1080/02670836.2020.1808387
    [11]
    Xiao Aida, Zheng Qing, Liang Liang, et al. Effect of Ti treatment process on inclusions in steel[J]. Iron Steel Vanadium Titanium, 2022,43(1):158−164. (肖爱达, 郑庆, 梁亮. Ti处理工艺对钢中夹杂物的影响[J]. 钢铁钒钛, 2022,43(1):158−164. doi: 10.7513/j.issn.1004-7638.2022.01.024
    [12]
    Wu Xiaoyan, Wu Shujing, Yan Chunliang, et al. Investigation of inclusion characteristics and intragranular acicular ferrite nucleation in Mg-containing low-carbon steel[J]. Metallurgical and Materials Transactions, 2021,52(2):1012−1022. doi: 10.1007/s11663-021-02073-1
    [13]
    Lei Xuanwei, Zhou Shuanbao, Huang Jihua. Current status and development trend on weldability of ultra-high strength hull structure steel[J]. Chinese Journal of Materials Research, 2020,34(1):1−15. (雷玄威, 周栓宝, 黄继华. 超高强度船体结构钢焊接性的研究现状和趋势[J]. 材料研究学报, 2020,34(1):1−15. doi: 10.11901/1005.3093.2019.371
    [14]
    Lou Haonan, Wang Chao, Wang Bingxing, et al. Evolution of inclusions and associated microstructure in Ti-Mg oxide metallurgy steel[J]. ISIJ International, 2019,59(2):312−318. doi: 10.2355/isijinternational.ISIJINT-2018-445
    [15]
    Xie Yumin, Song Mingming, Men Chaoqi, et al. Influence of Ca treatment on application of rare earth in HAZ during high heat input welding progress[J]. Iron and Steel, 2021,56(3):146−153,163. (谢毓敏, 宋明明, 门超奇, 等. 钙处理对稀土在大线能量焊接HAZ中作用的影响[J]. 钢铁, 2021,56(3):146−153,163. doi: 10.13228/j.boyuan.issn0449-749x.20200422
    [16]
    Sun Ligen, Li Huirong, Zhu Liguang, et al. Research on the evolution mechanism of pinned particles in welding HAZ of Mg treated shipbuilding steel[J]. Materials & Design, 2020,192(prepublish):108670−108670.
    [17]
    Zhu Liguang, Sun Ligen. Application and prospect for shipbuilding steel development with oxide metallurgy technique[J]. Steelmaking, 2017,33(5):1−11. (朱立光, 孙立根. 氧化物冶金技术及其在船体钢开发中的应用及展望[J]. 炼钢, 2017,33(5):1−11.
    [18]
    Li Yandong, Xing Weiwei, Li Xiaobing, et al. Effect of Mg addition on the microstructure and properties of a heat-affected zone in submerged arc welding of an Al-killed low carbon steel[J]. Materials, 2021,14(9):2445−2445. doi: 10.3390/ma14092445
    [19]
    王超. 氧化物冶金型大线能量焊接用钢组织性能调控与生产工艺研究[D]. 沈阳: 东北大学, 2017.

    Wang Chao. Microstructure and properties control of oxide metallurgical steels for high heat input welding and its production technology research[D]. Shengyang: Northeastern University, 2017.
    [20]
    Song Mingming, Song Bo, Hu Chunlin, et al. Effect of Ti-Mg complex deoxidation on the microstructure and impact properties of HAZ in steel[J]. Chinese Journal of Engineering, 2015,37(7):883−888. (宋明明, 宋波, 胡春林, 等. Ti-Mg复合脱氧对钢热影响区组织和冲击性能的影响[J]. 工程科学学报, 2015,37(7):883−888.
    [21]
    Xu Chen, Kong Hui, Zhang Mingya, et al. Relationship between MnS precipitation and respective effects of Ti-Mg bearing inclusions on the induction of intergranular acicular ferrite[J]. Materials Testing, 2019,61(2):164−168. doi: 10.3139/120.111301
    [22]
    Hans Kim, Chulho Chang, Haegeon Lee. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized Steels[J]. Scripta Materialia, 2005,53(11):1253−1258. doi: 10.1016/j.scriptamat.2005.08.001
    [23]
    Sangchae Park, Inho Jung, Kyungshik H, et al. Effect of Al on the evolution of non-metallic inclusions in the Mn-Si-Ti-Mg deoxidized steel during solidification: experiments and thermodynamic calculations[J]. ISIJ International, 2004,44(6):1016−1023. doi: 10.2355/isijinternational.44.1016
    [24]
    Song Yu, Li Guangqiang, Yang Fei. Influence of Al-Ti-Mg complex deoxidation on the inclusions and microstructure of steel[J]. Journal of University of Science and Technology Beijing, 2011,33(10):1214−1219. (宋宇, 李光强, 杨飞. Al-Ti-Mg复合脱氧对钢中夹杂物及组织的影响[J]. 北京科技大学学报, 2011,33(10):1214−1219. doi: 10.13374/j.issn1001-053x.2011.10.017
    [25]
    Wang Xin, Wang Chao, Kang Jian, et al. Relationship between impact toughness and microstructure for the as-rolled and simulated HAZ of low-carbon steel containing Ti-Ca oxide particles[J]. Metallurgical and Materials Transactions, 2020,51(6):2927−2938. doi: 10.1007/s11661-020-05753-w
    [26]
    Lou Haonan, Wang Chao, Wang Bingxing, et al. Effect of Ti–Mg–Ca treatment on properties of heat-affected zone after high heat input welding[J]. Journal of Iron and Steel Research International, 2019,26(5):501−511. doi: 10.1007/s42243-018-0091-6
    [27]
    Liu Hongbo, Li Jianxin, Lin Zhangguo, et al. Production technology and welding properties of high heat input welding EH420 offshore steel[J]. Chinese Journal of Engineering, 2020,42(11):1473−1480. (刘洪波, 李建新, 吝章国, 等. 大线能量焊接用EH420海工钢生产工艺及焊接性能[J]. 工程科学学报, 2020,42(11):1473−1480.
    [28]
    Shim J H, Byun J S, Cho Y W, et al. Mn absorption characteristics of Ti2O3 inclusions in low carbon steels[J]. Scripta Materialia, 2001,44(1):49−54. doi: 10.1016/S1359-6462(00)00560-1
    [29]
    Wu Zhenhua, Zheng Wan, Li Guangqiang, et al. Effect of inclusions' behavior on the microstructure in Al-Ti deoxidized and magnesium-treated steel with different aluminum contents[J]. Metallurgical and Materials Transactions, 2015,46(3):1226−1241. doi: 10.1007/s11663-015-0311-4
    [30]
    Liu Yu, Wan Xiangliang, Li Guangqiang, et al. Grain refinement in coarse-grained heat-affected zone of Al–Ti–Mg complex deoxidised steel[J]. Science and Technology of Welding and Joining, 2019,24(1):43−51. doi: 10.1080/13621718.2018.1476804
    [31]
    Ji Meifeng, Hu Feng, Zhang Liqin, et al. Effect of inclusion on toughness for low alloy high srength steel CGHAZ[J]. Journal of Iron and Steel Research, 2021,33(12):1278−1288. (吉梅锋, 胡锋, 张莉芹, 等. 含Mg夹杂物对低合金高强度钢CGHAZ韧性的影响[J]. 钢铁研究学报, 2021,33(12):1278−1288. doi: 10.13228/j.boyuan.issn1001-0963.20200262
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (157) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return