Volume 43 Issue 6
Jan.  2023
Turn off MathJax
Article Contents
Liu Jie, Li Juan. Research on effects of multi-pass rolling and heat treatment of cast Mn18Cr18N steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 180-184. doi: 10.7513/j.issn.1004-7638.2022.06.027
Citation: Liu Jie, Li Juan. Research on effects of multi-pass rolling and heat treatment of cast Mn18Cr18N steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 180-184. doi: 10.7513/j.issn.1004-7638.2022.06.027

Research on effects of multi-pass rolling and heat treatment of cast Mn18Cr18N steel

doi: 10.7513/j.issn.1004-7638.2022.06.027
  • Received Date: 2021-02-28
  • Publish Date: 2023-01-13
  • Mn18Cr18N electro-slag remelting steel was rolled in three or five passes and subject to solid solution treatment. The microstructure observation by electron back scattering diffraction (EBSD) indicates that with the increase of rolling passes, the recrystallized grains grow along the grain boundaries and distributes into a chain structure, and the high angle grain boundaries gradually migrate to the small angle grain boundaries and then stabilize. A large number of shear deformation bands appear. A larger single pass deformation or a higher final rolling temperature is beneficial to the recrystallization of Mn18Cr18N as-cast austenitic stainless steel after rolling. After solid solution treatment,the grain becomes fine due to increasing annealing twin grain and static recrystallization. With the increase of rolling passes, the tensile strength is increased from 950 MPa to 1090 MPa, and elongation after fracture decreases from 43.46% to 29.55%. After the solid solution treatment, the tensile strength decreases from 904 MPa for 3-passes to 870 MPa for 5-passes, with the strength decreasing; and the elongation after fracture increases from 42% to 48% accordingly. The results showes that the solid solution treatment can improve the microstructure and properties of the material.
  • loading
  • [1]
    Sun Hongying, Sun Yongduo, Zhang Ruiqian, et al. Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel[J]. Materials and Design, 2014,64:374−380. doi: 10.1016/j.matdes.2014.08.001
    [2]
    Jiang Yi, Cheng Manlang, Jiang Haihong, et al. Microstructure and properties of 08Cr19Mn6Ni3Cu2N (QN1803) high strength nitrogen alloyed low nickel austenitic stainless steel[J]. Acta Metallurgica Sinica, 2020,56(4):264−274. (蒋一, 程满浪, 姜海洪, 等. 高强度含Ni奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020,56(4):264−274.
    [3]
    Zhang Yunfei, Zhao Yingli, Chang Jinbao, et al. Research on hot deformation behavior of low-nickel high nitrogen austenitic stainless steel[J]. Shanghai Metals, 2018,40(6):19−23. (张雲飞, 赵英利, 常金宝, 等. 节镍型高氮奥氏体不锈钢热变形行为的研究[J]. 上海金属, 2018,40(6):19−23. doi: 10.3969/j.issn.1001-7208.2018.06.004
    [4]
    Pei Haixiang, Zeng Li, Wang Lixin, et al. Hot deformation behavior and structure evolution of high nitrogen ultra-low-carbon austenite stainless steel 316LN[J]. Special Steel, 2014,35(6):54−56. (裴海祥, 曾莉, 王立新, 等. 316LN高氮超低碳奥氏体不锈钢的热变形行为和组织演变[J]. 特殊钢, 2014,35(6):54−56. doi: 10.3969/j.issn.1003-8620.2014.06.016
    [5]
    Li Jianxin, Zhao Yingli, Wang Guoying, et al. Effect of cold rolling deformation on structure and property of high nitrogen austenitic stainless steel Mn17Cr19N0.6[J]. Special Steel, 2020,41(1):61−63. (李建新, 赵英利, 王国营, 等. 冷轧变形量对高氮奥氏体不锈钢Mn17Cr19N0.6组织和性能的影响[J]. 特殊钢, 2020,41(1):61−63. doi: 10.3969/j.issn.1003-8620.2020.01.016
    [6]
    王岩. δ相对GH4169合金高温变形及再结晶行为的影响[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    Wang Yan. Effect of delta phase on hot deformation and recrystallization behavior of alloy GH4169[D]. Harbin: Harbin Institute of Technology, 2008.
    [7]
    Hayes J S ,Kyte R, Prangnell P B. Effect of grain size on the tensile behavior of a submicron grained Al-3%Mg alloy produced by severe deformation[J]. Materials Science and Technology, 2000,16(11):1259−1263.
    [8]
    Yang Gang, Sun Lijun, Zhang Lina, et al. Annihilation of defor mation twins and for mation of annealing twins[J]. Journal of Iron and Steel Research, 2009,21(2):39−43. (杨钢, 孙利军, 张丽娜, 等. 形变孪晶的消失与退火孪晶的形成机制[J]. 钢铁研究学报, 2009,21(2):39−43. doi: 10.13228/j.boyuan.issn1001-0963.2009.02.002
    [9]
    Gao Yubi, Ding Yutian, Chen Jianjun, et al. Behavior of cold work hardening and annealing softening and microstructure characteristics of GH3625 superalloy[J]. The Chinese Journal of Nonferrous Metals, 2019,29(1):44−53. (高钰璧, 丁雨田, 陈建军, 等. GH3625合金冷变形硬化、退火软化行为及其组织特征[J]. 中国有色金属学报, 2019,29(1):44−53. doi: 10.19476/j.ysxb.1004.0609.2019.01.06
    [10]
    Li Juan, Zhao Guanghui, Ma Lifeng, et al. Hot deformation behavior and microstructural evolution of as-cast 304L antibacterial austenitic stainless steel[J]. Materials Research Express, 2018,5(2):1847−1853.
    [11]
    Chen Xiaoqiu, Pang Wuji, Shang Feng, et al. Effects of solution treatment on microstructure and properties of SAF 2507 duplex stainless steel prepared by powder injection molding[J]. Hot Working Technology, 2019,48(6):203−206. (陈晓秋, 庞午骥, 尚峰, 等. 固溶处理对粉末注射成形SAF 2507双相不锈钢组织和性能的影响[J]. 热加工工艺, 2019,48(6):203−206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (75) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return