Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Liu Xi, Pu Yuwen, Xu Zongyuan, Tang Kang, Zheng Guocan, Chen Yan, Liu Zuohua, Du Jun, Peng Yi, Tao Changyuan. Study on migration and transformation behavior of elements during vanadium extraction by calcification[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 1-9. doi: 10.7513/j.issn.1004-7638.2023.04.001
Citation: Liu Xi, Pu Yuwen, Xu Zongyuan, Tang Kang, Zheng Guocan, Chen Yan, Liu Zuohua, Du Jun, Peng Yi, Tao Changyuan. Study on migration and transformation behavior of elements during vanadium extraction by calcification[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 1-9. doi: 10.7513/j.issn.1004-7638.2023.04.001

Study on migration and transformation behavior of elements during vanadium extraction by calcification

doi: 10.7513/j.issn.1004-7638.2023.04.001
  • Received Date: 2023-04-03
  • Publish Date: 2023-08-30
  • Combined with XRD, XPS, SEM-EDS and ICP-OES characterizations, the phase composition and morphology of acid ammonium salt precipitation vanadium products under different pH values were studied; also the migration and transformation behavior of V, Fe and Mn were analyzed when the pH value of vanadium precipitation was 2.20. The results show that the pH value of vanadium precipitation significantly affects the composition and morphology of the product. The filter cake of vanadium precipitation is amorphous at low pH value, and the crystal form is gradually determined with the increase of pH value. V exists in the form of CaV2O6 in vanadium extraction tailings, polyvanadate in filter cake, and V2O5 in the final product. The main forms of Fe in tailings are Fe2O3 and Fe2TiO5, which are less abundant in vanadium filter cake and final product. Mn exists in the form of MnSO4 in the tailings, and mainly enters the supernatant during vanadium precipitation, while MnV2O6·4H2O exists in the filter cake and with 0.210% in the final product.
  • loading
  • [1]
    Anjass Montaha H, Kastner Katharina, Naegele Florian, et al. Stabilization of low-valent iron(I) in a high-valent vanadium(V) oxide cluster[J]. Angewandte Chemie-International Edition, 2017,56(46):14749−14752. doi: 10.1002/anie.201706828
    [2]
    Cha Woojoon, Chin Sungmin, Park Eunseuk, et al. Photocatalytic performance of V2O5/TiO2 materials prepared by chemical vapor condensation and impregnation method under visible-light[J]. Powder Technology, 2014,258:352−357. doi: 10.1016/j.powtec.2014.03.012
    [3]
    Gao Feng, Olayiwola Afolabi Uthmon, Liu Biao, et al. Review of vanadium production part I: Primary resources[J]. Mineral Processing and Extractive Metallurgy Review, 2021,43(4):466−488.
    [4]
    He Zhangxing, Li Manman, Li Yuehua, et al. Electrospun nitrogen-doped carbon nanofiber as negative electrode for vanadium redox flow battery[J]. Applied Surface Science, 2019,469:423−430. doi: 10.1016/j.apsusc.2018.10.220
    [5]
    Chen Desheng, Zhao Hongxin, Hu Guoping, et al. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite[J]. Journal of Hazardous Materials, 2015,294:35−40. doi: 10.1016/j.jhazmat.2015.03.054
    [6]
    Gilligan Rorie, Nikoloski Aleksandar N. The extraction of vanadium from titanomagnetites and other sources[J]. Minerals Engineering, 2020,146:18.
    [7]
    Dong Yingbo, Liu Yue, Lin Hai, et al. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus[J]. Transactions of Nonferrous Metals Society of China, 2019,29(4):849−858. doi: 10.1016/S1003-6326(19)64995-2
    [8]
    Zhao Yunliang, Wang Wei, Zhang Yimin, et al. In-situ investigation on mineral phase transition during roasting of vanadium-bearing stone coal[J]. Advanced Powder Technology, 2017,28(3):1103−1107. doi: 10.1016/j.apt.2016.12.019
    [9]
    Ma Zhiyuan, Liu Yong, Zhou Jikui, et al. Recovery of vanadium and molybdenum from spent petrochemical catalyst by microwave-assisted leaching[J]. International Journal of Minerals, Metallurgy and Materials, 2019,26(1):33−40. doi: 10.1007/s12613-019-1707-y
    [10]
    Deng Rongrui, Xiao Hao, Xie Zhaoming, et al. A novel method for extracting vanadium by low temperature sodium roasting from converter vanadium slag[J]. Chinese Journal of Chemical Engineering, 2020,28(8):2208−2213. doi: 10.1016/j.cjche.2020.03.038
    [11]
    Li Hongyi, Fang Haixing, Wang Kang, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015,156:124−135. doi: 10.1016/j.hydromet.2015.06.003
    [12]
    Wen Jing, Jiang Tao, Liu Yajing, et al. Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: Optimization using response surface methodology[J]. Mineral Processing and Extractive Metallurgy Review, 2018,40(1):56−66.
    [13]
    Peng Hao, Li Bing, Shi Wenbing, et al. Efficient recovery of vanadium from high-chromium vanadium slag with calcium-roasting acidic leaching[J]. Minerals, 2022,12(2):342.
    [14]
    Li Hongyi, Wang Chengjie, Yuan Yiheng, et al. Magnesiation roasting-acid leaching: A zero-discharge method for vanadium extraction from vanadium slag[J]. Journal of Cleaner Production, 2020,260:121091. doi: 10.1016/j.jclepro.2020.121091
    [15]
    Wen Jing, Jiang Tao, Wang Junpeng, et al. An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings[J]. Journal of Hazardous Materials, 2019,378:120733. doi: 10.1016/j.jhazmat.2019.06.010
    [16]
    Xiang Junyi, Huang Qingyun, Lv Xuewei, et al. Effect of mechanical activation treatment on the recovery of vanadium from converter slag[J]. Metallurgical and Materials Transactions B, 2017,48(5):2759−2767. doi: 10.1007/s11663-017-1033-6
    [17]
    Wu Zhenxiu, Jiang Lin. Study on vanadium precipitation by hydrolysis of chromium-vanadium solution[J]. Iron Steel Vanadium Titamium, 2020,41(5):22−26. (伍珍秀, 蒋霖. 钒铬溶液水解沉钒试验研究[J]. 钢铁钒钛, 2020,41(5):22−26. doi: 10.7513/j.issn.1004-7638.2020.05.004

    Wu Zhenxiu, Jiang Lin. Study on vanadium precipitation by hydrolysis of chromium-vanadium solution [J]. Iron Steel Vanadium Titamium, 2020, 41(5): 22-26. doi: 10.7513/j.issn.1004-7638.2020.05.004
    [18]
    Li He, Liu Xuheng, He Lihua. Thermodynamic study on vanadium precipitation with calcium salt[J]. Rare Metals and Cemented Carbides, 2014,42(1):15−19. (李贺, 刘旭恒, 何利华. 钙盐沉钒的热力学研究[J]. 稀有金属与硬质合金, 2014,42(1):15−19.

    Li He, Liu Xuheng, He Lihua. Thermodynamic study on vanadium precipitation with calcium salt [J]. Rare Metals and Cemented Carbides, 2014, 42(1): 15-19.
    [19]
    Li Dabiao. Experiment of acidic precipitation of vanadate-leaching solution[J]. Journal of Process Engineering, 2003,3(1):53−56. (李大标. 酸性铵盐沉钒条件实验研究[J]. 过程工程学报, 2003,3(1):53−56.

    Li Dabiao. Experiment of acidic precipitation of vanadate-leaching solution [J]. Journal of Process Engineering, 2003, 3(1): 53-56.
    [20]
    Ma Lei, Zhang Yiming, Liu Tao, et al. Enhancing effect of precipitating vanadium in acid ammonium salt[J]. Rare Metals, 2009,33(6):936−939. (马蕾, 张一敏, 刘涛, 等. 提高酸性铵盐沉钒效果的研究[J]. 稀有金属, 2009,33(6):936−939.

    Ma Lei, Zhang Yiming, Liu Tao, et al. Enhancing effect of precipitating vanadium in acid ammonium salt [J]. Rare Metals, 2009, 33(6): 936-939.
    [21]
    Zhan Lianlian, Zhang Yang, Zheng Shili, et al. Crystallization kinetics of ammonium polyvanadate[J]. Journal of Crystal Growth, 2019,526:125218. doi: 10.1016/j.jcrysgro.2019.125218
    [22]
    Zhang Juhua, Liang Yue, Zhang Wei, et al. Recovery of manganese from the mother liquor after vanadium precipitation during vanadium extraction with calcified roasting and acid leaching process[J]. Journal of Process Engineering, 2020,20(10):1174−1181. (张菊花, 梁月, 张伟, 等. 钙化-酸浸提钒沉钒母液中锰的回收[J]. 过程工程学报, 2020,20(10):1174−1181.

    Zhang Juhua, Liang Yue, Zhang Wei, et al. Recovery of manganese from the mother liquor after vanadium precipitation during vanadium extraction with calcified roasting and acid leaching process [J]. Journal of Process Engineering, 2020, 20(10): 1174-1181.
    [23]
    Chen Liang. Effects of pH and temperature on acidic ammonium salt precipitation of vanadate leaching solution[J]. Rare Metals, 2010,34(6):924−929. (陈亮. pH值和温度对酸性铵盐沉钒影响研究[J]. 稀有金属, 2010,34(6):924−929.

    Chen Liang. Effects of pH and temperature on acidic ammonium salt precipitation of vanadate leaching solution [J]. Rare Metals, 2010, 34(6): 924-929.
    [24]
    Wang Yanrong, Li Dabiao, Zhang Hong, et al. Discussion on the main factors affecting vanadium precipitation by acidic ammonium salt and its countermeasures[J]. Ferroalloy, 2012,43(4):12−16. (王艳戎, 李大标, 张宏, 等. 影响酸性铵盐沉钒主要因素及对策探讨[J]. 铁合金, 2012,43(4):12−16.

    Wang Yanrong, Li Dabiao, Zhang Hong, et al. Discussion on the main factors affecting vanadium precipitation by acidic ammonium salt and its countermeasures [J]. Ferroalloy, 2012, 43(4): 12-16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (140) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return