Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Li Wenjing, Guo Yun, Yang Yadong, Liu Bo, Xin Yanan. Study on the preparation of spherical TiC nanopowder by molten salt method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002
Citation: Li Wenjing, Guo Yun, Yang Yadong, Liu Bo, Xin Yanan. Study on the preparation of spherical TiC nanopowder by molten salt method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002

Study on the preparation of spherical TiC nanopowder by molten salt method

doi: 10.7513/j.issn.1004-7638.2023.04.002
  • Received Date: 2023-03-27
  • Publish Date: 2023-08-30
  • In combination with the national strategic deployment of the 14th Five-Year Plan, based on the enterprise resource background and the downstream market demand, this paper proposes to prepare spherical titanium carbide (TiC) nanopowder through the short process of molten salt method. The process does not use flammable and explosive reducing agent, and has high safety factor. The process produces products with high quality, controllable output, short production cycle and environmental protection, which has certain industrial popularization. The selection and proportion of titanium source and carbon source, the proportion of molten salt, the calcination temperature of nanoparticles, and the effect of holding time on the morphology and quality of nanoparticles were studied. The phase composition and microstructure of the particles were characterized by XRD and SEM. The results show that when the molar ratio of NaCl-KCl mixed salt is 1∶1, the reactants in the ratio of Ti/C molar ratio of 1∶1, and TiC begins to form when the temperature is kept at 700 ℃ for 2 h. With the increase of temperature, the purity of the target product in the product gradually increases. The temperature of holding at 900 ℃ for 2 h can obtain the pure target product, without the formation of other by-products. The morphology is spherical, and the particle size is about 80 nm. If the holding time is changed, when the holding time is 5 h, the pure target product can be obtained at 850 ℃, but the particle size will be moderately increased to 100 nm. From the perspective of reducing raw material costs, when the titanium source ratio is Ti∶TiO2=9∶1, impurity free titanium carbide nanoparticles can be obtained at 900 ℃, with spherical morphology and particle size ranging from 50 to 65 nm.
  • loading
  • [1]
    Liu Yang, Zhang Haodong, Yuan Suiyan, et al. Study on the mechanical properties of titanium carbide silicon ceramic materials[J]. Modern Salt Chemical Industry, 2021,(5):74−75. (刘洋, 张浩东, 原遂严, 等. 碳化钛硅陶瓷材料力学性能研究[J]. 现代盐化工, 2021,(5):74−75.

    Liu Yang, Zhang Haodong, Yuan Suiyan, et al. Study on the mechanical properties of titanium carbide silicon ceramic materials[J]. Modern Salt Chemical Industry, 2021, (5): 74-75
    [2]
    Liu Ping'an, Zeng Lingke, Shui Anze, et al. Research progress in the preparation and application of ultrafine titanium carbide powder[J]. Weapon Materials Science and Engineering, 2006,29(5):82−85. (刘平安, 曾令可, 税安泽, 等. 超细碳化钛粉体的制备及应用研究进展[J]. 兵器材料科学与工程, 2006,29(5):82−85.

    Liu Ping'an, Zeng Lingke, Shui Anze, et al. Research progress in the preparation and application of ultrafine titanium carbide powder[J]. Weapon Materials Science and Engineering, 2006, 29 (5): 82-85
    [3]
    Xu Benping. Current status and latest progress in chemical phase analysis of vanadium and titanium in vanadium and titanium materials[J]. China Inorganic Analytical Chemistry, 2014,4(2):18−23. (徐本平. 钒钛物料中钒钛化学物相分析现状及最新进展[J]. 中国无机分析化学, 2014,4(2):18−23.

    Xu Benping. Current status and latest progress in chemical phase analysis of vanadium and titanium in vanadium and titanium materials[J]. China Inorganic Analytical Chemistry, 2014, 4 (2): 18-23
    [4]
    Bandar Almangour, Min-seok Baek, Dariusz Grzesiak, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J]. Materials Science & Engineering A , 2017: S0921509317315.
    [5]
    Kattamis T Z, Suganuma T. Solidification processing and tribological behavior of particulate TiC-ferrous matrix composites[J]. Materials Science and Engineering A, 1990,128(2):241−252. doi: 10.1016/0921-5093(90)90232-R
    [6]
    Sen Wei, Xu Baoqiang, Yang Bin, et al. Preparation of titanium carbide powder by vacuum carbothermal reduction method[J]. Chinese Journal of Non Ferrous Metals:English Edition, 2011,21(1):185−190. (森维, 徐宝强, 杨斌, 等. 真空碳热还原法制备碳化钛粉末[J]. 中国有色金属学报:英文版, 2011,21(1):185−190.

    Sen Wei, Xu Baoqiang, Yang Bin, et al. Preparation of titanium carbide powder by vacuum carbothermal reduction method[J]. Chinese Journal of Non Ferrous Metals: English Edition, 2011, 21 (1): 185-190
    [7]
    Wang Zhi, Yuan Zhangfu, Guo Zhancheng. Exploration of a new process for direct preparation of titanium alloy by molten salt electrolysis[J]. Non-ferrous Metals, 2003,55(4):32-43. (王志, 袁章福, 郭占成. 熔盐电解法直接制备钛合金新工艺探讨[J]. 有色金属, 2003,55(4):32-43.

    Wang Zhi, Yuan Zhangfu, Guo Zhancheng. Exploration of a new process for direct preparation of titanium alloy by molten salt electrolysis[J]. Non-ferrous Metals, 2003, 55 (4): 4
    [8]
    Hao Xian, Liang Feng, Li Hongxia, et al. Progress in the preparation of nano titanium carbide and its application in energy storage[J]. Material Introduction, 2021,35(S01):11-18. (郝娴, 梁峰, 李红霞, 等. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021,35(S01):11-18.

    Hao Xian, Liang Feng, Li Hongxia, et al. Progress in the preparation of nano titanium carbide and its application in energy storage[J]. Material Introduction, 2021, 35 (S01): 8
    [9]
    Wang Jinshu, Xing Pengfei, Li Lili, et al. Preparation and characterization of N doped nano TiO2 by mechanochemical method[J]. Journal of Beijing University of Technology, 2006,32(7):633−637. (王金淑, 邢朋飞, 李莉莉, 等. 机械化学法N掺杂纳米TiO2的制备与表征[J]. 北京工业大学学报, 2006,32(7):633−637.

    Wang Jinshu, Xing Pengfei, Li Lili, et al. Preparation and characterization of N doped nano TiO2 by mechanochemical method[J]. Journal of Beijing University of Technology, 2006, 32 (7): 633-637
    [10]
    Luo Xuming, Chen Yiming, Mu Yufeng. Self propagating high-temperature synthesis of non stoichiometric titanium carbide based cermets[J]. Material Development and Application, 1995,(5):20−23. (罗序明, 陈一鸣, 母育锋. 自蔓延高温合成非化学计量碳化钛基金属陶瓷[J]. 材料开发与应用, 1995,(5):20−23.

    Luo Xuming, Chen Yiming, Mu Yufeng. Self propagating high-temperature synthesis of non stoichiometric titanium carbide based cermets[J]. Material Development and Application, 1995, (5): 20-23
    [11]
    Lv Yanan, Chen Dong. Study on atomic diffusion behavior during the formation of titanium carbide particles[J]. Iron Steel Vanadium Titanium, 2021,42(3):143−147. (吕亚男, 陈栋. 碳化钛颗粒形成过程中原子扩散行为研究[J]. 钢铁钒钛, 2021,42(3):143−147.

    Lv Yanan, Chen Dong. Study on atomic diffusion behavior during the formation of titanium carbide particles[J]. Iron Steel Vanadium Titanium, 2021, 42 (3): 143-147
    [12]
    Zhou Yanli. Research on the salt separation process of sodium chloride and potassium chloride wastewater[J]. Hebei Chemical Industry, 2021,44(1):136−138. (周艳丽. 氯化钠氯化钾废水分盐工艺研究[J]. 河北化工, 2021,44(1):136−138.

    Zhou Yanli. Research on the salt separation process of sodium chloride and potassium chloride wastewater[J]. Hebei Chemical Industry, 2021, 44 (1): 136-138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (104) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return