Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Mai Ping. Effect of ball milling time on the microstructure and mechanical properties of porous Ti-5Cu alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 62-67. doi: 10.7513/j.issn.1004-7638.2023.04.009
Citation: Mai Ping. Effect of ball milling time on the microstructure and mechanical properties of porous Ti-5Cu alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 62-67. doi: 10.7513/j.issn.1004-7638.2023.04.009

Effect of ball milling time on the microstructure and mechanical properties of porous Ti-5Cu alloys

doi: 10.7513/j.issn.1004-7638.2023.04.009
  • Received Date: 2022-10-01
  • Publish Date: 2023-08-30
  • Biomedical porous Ti-5Cu alloys were prepared by mechanical ball milling and space holder method through vacuum sintering. The metal powders ball milled with different time were analyzed by scanning electron microscopy, X-ray diffractometer and laser particle size analyzer, and the effects of ball milling time on the microstructure and mechanical properties of the porous Ti-5Cu alloy were investigated. The results showed that the morphology of Ti-5Cu powder became flat and its average particle size decreased significantly after 2 h ball milling. Further increasing the milling time only slightly reduced the average particle size of the powder. With the increase of ball milling time, the porosity of the porous Ti-5Cu alloy with anisotropic pore structure simulating human bone gradually decreased, and its elastic modulus and compressive strength first increased and then decreased. At the time point of ball milling, the elastic modulus and compressive strength of porous Ti-5Cu alloy prepared by ball milling for 2 h achieved the highest values, which were 3.79 GPa and 89.00 MPa, respectively.
  • loading
  • [1]
    Sidhu S S, Singh H, Gepreel A H. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials[J]. Materials Science and Engineering C:Materials for Biological Applications, 2020,121(11):111661.
    [2]
    Yang Jiahui, Zhang Yifan, Wu Junxia, et al. Research progress of biomedical titanium alloy[J]. Rare Metals and Cemented Carbides, 2021,49(5):29−34,40. (杨佳惠, 张一凡, 武俊霞, 等. 生物医用钛合金研究进展[J]. 稀有金属与硬质合金, 2021,49(5):29−34,40.

    Yang Jiahui, Zhang Yifan, Wu Junxia, et al. Research progress of biomedical titanium alloy[J]. Rare Metals and Cemented Carbides, 2021, 49(5): 29-34, 40.
    [3]
    Zhang L C, Chen L Y. A review on biomedical titanium alloys: Recent progress and prospect[J]. Advanced Engineering Materials, 2019,21:1801215. doi: 10.1002/adem.201801215
    [4]
    Liu Jianqiao, Liu Jia, Tang Yujin, et al. Research progress in titanium alloy in the field of orthopaedic implants[J]. Journal of Materials Engineering, 2021,49(8):11−25. (刘剑桥, 刘佳, 唐毓金, 等. 钛合金在骨科植入领域的研究进展[J]. 材料工程, 2021,49(8):11−25. doi: 10.11868/j.issn.1001-4381.2020.000380

    Liu Jianqiao, Liu Jia, Tang Yujin, et al. Research progress in titanium alloy in the field of orthopaedic implants[J]. Journal of Materials Engineering, 2021, 49(8): 11-25. doi: 10.11868/j.issn.1001-4381.2020.000380
    [5]
    Chen L Y, Cui Y W, Zhang L C. Recent development in beta titanium alloys for biomedical applications[J]. Metals, 2020,10:1139. doi: 10.3390/met10091139
    [6]
    Rodriguez-Contreras A, Punset M, Calero J, et al. Powder metallurgy with space holder for porous titanium implants: A review[J]. Journal of Materials Science and Technology, 2021,76(17):21.
    [7]
    Zhang Erlin, Wang Xiaoyan, Han Yong. Research status of biomedical porous Ti and its alloy in China[J]. Acta Metallurgica Sinica, 2017,53(12):1555−1567. (张二林, 王晓燕, 憨勇. 医用多孔Ti及钛合金的国内研究现状[J]. 金属学报, 2017,53(12):1555−1567. doi: 10.11900/0412.1961.2017.00324

    Zhang Erlin, Wang Xiaoyan, Han Yong. Research status of biomedical porous Ti and its alloy in China[J]. Acta Metallurgica Sinica, 2017, 53(12): 1555-1567. doi: 10.11900/0412.1961.2017.00324
    [8]
    Zhao C, Liang K, Tan J, et al. Bioactivity of porous titanium with hydrogen peroxide solution with or without tantalum chloride treatment at a low temperature[J]. Biomedical Materials, 2013,8(2):025006. doi: 10.1088/1748-6041/8/2/025006
    [9]
    Fujibayashi S, Neo M, Kim H M, et al. Osteoinduction of porous bioactive titanium metal[J]. Biomaterials, 2004,25(3):443−450. doi: 10.1016/S0142-9612(03)00551-9
    [10]
    Lin Xiao, Ge Jun, Wu Shuilin, et al. Advances in metallic biomaterials with both osteogenic and anti-infection properties[J]. Acta Metallurgica Sinica, 2017,53(10):1284−1302. (林潇, 葛隽, 吴水林, 等. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017,53(10):1284−1302. doi: 10.11900/0412.1961.2017.000269

    Lin Xiao, Ge Jun, Wu Shuilin, et al. Advances in metallic biomaterials with both osteogenic and anti-infection properties[J]. Acta Metallurgica Sinica, 2017, 53(10): 1284-1302. doi: 10.11900/0412.1961.2017.000269
    [11]
    Chen Q, Thouas G A. Metallic implant biomaterials[J]. Materials Science and Engineering R, 2015,87:1−57. doi: 10.1016/j.mser.2014.10.001
    [12]
    Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper[J]. International Journal of Hygiene & Environmental Health, 2016,219:585−591.
    [13]
    Akbarpour M R, Mirabad H M, Hemmati A, et al. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review[J]. Progress in Materials Science, 2022,127:100933. doi: 10.1016/j.pmatsci.2022.100933
    [14]
    Liu J, Li F, Liu C, et al. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys[J]. Materials Science & Engineering C:Materials for Biological Applications, 2014,35(1):392−400.
    [15]
    Zhang E, Zheng L, Liu J, et al. Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys[J]. Materials Science & Engineering C:Materials for Biological Applications, 2015,36(8):148−157.
    [16]
    Zhang E, Li S, Ren J, et al. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys[J]. Materials Science & Engineering C:Materials for Biological Applications, 2016,69:760−768.
    [17]
    Liu R, Ma Z, Kunle Kolawole S, et al. In vitro study on cytocompatibility and osteogenesis ability of Ti–Cu alloy[J]. Journal of Materials Science:Materials in Medicine, 2019,30(7):75. doi: 10.1007/s10856-019-6277-z
    [18]
    Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys[J]. Dental Materials, 2006,22(7):641−646. doi: 10.1016/j.dental.2005.05.015
    [19]
    Alshammari Y, Yang F, Bolzoni L. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,95:232−239. doi: 10.1016/j.jmbbm.2019.04.004
    [20]
    Mai Ping, Cui Xumei, Zhao Chaoyong, et al. Effect of sintering process on microstructure and mechanical properties of porous Ti-5Cu alloy[J]. Iron Steel Vanadium Titanium, 2019,40(3):46−53. (麦萍, 崔旭梅, 赵朝勇, 等. 烧结工艺对多孔Ti-5Cu合金微观结构和力学性能的影响[J]. 钢铁钒钛, 2019,40(3):46−53.

    Mai Ping, Cui Xumei, Zhao Chaoyong, et al. Effect of sintering process on microstructure and mechanical properties of porous Ti-5 Cu alloy[J]. Iron Steel Vanadium Titanium, 2019, 40(3): 46-53.
    [21]
    Wang X P, Xu L J, Chen Y Y, et al. Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering[J]. Transactions of Nonferrous Metals Society of China, 2012,22(3):608−612. doi: 10.1016/S1003-6326(11)61221-1
    [22]
    Zhao Chaoyong, Zhang Xuefeng, Zhang Lei, et al. Preparation and mechanical properties of porous Ti-5Ag alloy[J]. Iron Steel Vanadium Titanium, 2018,39(2):49−55. (赵朝勇, 张雪峰, 张磊, 等. 多孔Ti-5Ag合金的制备及力学性能研究[J]. 钢铁钒钛, 2018,39(2):49−55. doi: 10.7513/j.issn.1004-7638.2018.02.008

    Zhao Chaoyong, Zhang Xuefeng, Zhang Lei, et al. Preparation and mechanical properties of porous Ti-5 Ag alloy[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 49-55. doi: 10.7513/j.issn.1004-7638.2018.02.008
    [23]
    Nouri A, Hodgson P D, Wen C. Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy[J]. Materials Science and Engineering C:Materials for Biological Applications, 2011,31(5):921−928. doi: 10.1016/j.msec.2011.02.011
    [24]
    唐仁政, 田荣璋. 二元合金相图及中间相晶体结构[M]. 长沙: 中南大学出版社, 2009.

    Tang Renzheng, Tian Rongzhang. Binary alloy phase diagrams and crystal structure of intermediate phase[M]. Changsha: Central South University Press, 2009.
    [25]
    Hou L G, Li L I, Zheng Y F. Effects of ball milling time on porous Ti–3Ag alloy and its apatite-inducing abilities[J]. Transactions of Nonferrous Metals Society of China, 2013,23(5):1356−1366. doi: 10.1016/S1003-6326(13)62604-7
    [26]
    Weiner S, Wagner H D. The material bone: Structure-mechanical function relations[J]. Annual Review of Materials Science, 1998,28(1):271−298. doi: 10.1146/annurev.matsci.28.1.271
    [27]
    Alvarez K, Nakajima H. Metallic scaffolds for bone regeneration[J]. Materials, 2009,2(3):790−832. doi: 10.3390/ma2030790
    [28]
    Pattanayak D K, Matsushita T, Doi K, et al. Effects of oxygen content of porous titanium metal on its apatite-forming ability and compressive strength[J]. Materials Science and Engineering C:Materials for Biological Applications, 2009,29(6):1974−1978. doi: 10.1016/j.msec.2009.03.014
    [29]
    Gibson L J. The mechanical behaviour of cancellous bone[J]. Journal of Biomechanics, 1985,18(5):317−328. doi: 10.1016/0021-9290(85)90287-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (71) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return