Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Jiang Yong, Su Yaobin, Gao Rui, Wu Maojie, Jiang Yun, Jiao Xiaofei. Study on hydration reaction of titanium gypsum–titanium slag low clinker cement[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 103-111. doi: 10.7513/j.issn.1004-7638.2023.04.016
Citation: Jiang Yong, Su Yaobin, Gao Rui, Wu Maojie, Jiang Yun, Jiao Xiaofei. Study on hydration reaction of titanium gypsum–titanium slag low clinker cement[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 103-111. doi: 10.7513/j.issn.1004-7638.2023.04.016

Study on hydration reaction of titanium gypsum–titanium slag low clinker cement

doi: 10.7513/j.issn.1004-7638.2023.04.016
  • Received Date: 2023-03-23
  • Publish Date: 2023-08-30
  • In order to explore the feasibility of using titanium gypsum and titanium slag to prepare low clinker cement and study its hydration characteristics, 10 groups of cement were prepared with titanium gypsum, titanium slag and cement clinker as the main raw materials and sodium silicate as the activator. The compressive strength, softening coefficient and shrinkage rate of each group were tested. The hydration process and hydration products were studied by hydration thermal analysis, TG-DSC, XRD and SEM. The results show that appropriate increase of titanium slag or clinker content can improve the compressive strength and softening coefficient of cement, and reduce the shrinkage of cement. Sodium silicate can significantly activate the hydration reactivity of cement, and promote the generation of more C-S(A)-H, AFt and CH, so as to improve the compressive strength and softening coefficient, but excessive incorporation of sodium silicate will cause an increase in shrinkage rate. With the ratio of titanium gypsum, titanium slag, clinker and sodium silicate of 30∶55∶15∶8, the compressive strength reached 51.3 MPa of 56 days after curing and the softening coefficient was 0.74, showing good mechanical properties and water resistance.
  • loading
  • [1]
    Ma Lei, Sheng Yu, Zhou Junhong, et al. Study on new process of comprehensive utilization and separation of sulfur and calcium of titanium gypsum[J]. Inorganic Chemicals Industry, 2022,54(7):124−128. (马磊, 盛余, 周骏宏, 等. 钛石膏综合利用及硫钙分离新工艺研究[J]. 无机盐工业, 2022,54(7):124−128.

    Ma Lei, Sheng Yu, Zhou Junhong, et al. Study on new process of comprehensive utilization and separation of sulfur and calcium of titanium gypsum[J]. Inorganic Chemicals Industry, 2022, 54(7): 124-128
    [2]
    Jin Biqiang, Zhang Tingting, Zhu Jingping, et al. The development and research progress of titanium gypsum exploitation and utilization[J]. Multipurpose Utilization of Mineral Resources, 2020,(3):28−32. (靳必强, 张婷婷, 朱静平, 等. 钛石膏的开发利用研究进展[J]. 矿产综合利用, 2020,(3):28−32.

    Jin Biqiang, Zhang Tingting, Zhu Jingping, et al. The development and research progress of titanium gypsum exploitation and utilization[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 28-32
    [3]
    Zhang Jiufu, Yan Yun, Hu Zhihua, et al. Properties and hydration behavior of Ti-extracted residues-red gypsum based cementitious materials[J]. Construction and Building Materials, 2019,(218):610−617.
    [4]
    Yang He. Analysis of the strength mechanism of lime-base activated titanium gypsum composite cementitious material[J]. Iron Steel Vanadium Titanium, 2021,42(3):111−118. (杨贺. 石灰碱激发钛石膏复合胶凝材料强度机理分析[J]. 钢铁钒钛, 2021,42(3):111−118.

    Yang He. Analysis of the strength mechanism of lime-base activated titanium gypsum composite cementitious material[J]. Iron Steel Vanadium Titanium, 2021, 42(3): 111-118
    [5]
    Du Huihui, Ni Wen, Gao Guangjun, et al. Research on application of vanadium-titanium slag in fabricated precast concrete slab[J]. New Building Materials, 2021,48(10):172−177. (杜惠惠, 倪文, 高广军, 等. 钒钛矿渣在装配式预制板材中的应用研究[J]. 新型建筑材料, 2021,48(10):172−177.

    Du Huihui, Ni Wen, Gao Guangjun, et al. Research on application of vanadium-titanium slag in fabricated precast concrete slab[J]. New Building Materials, 2021, 48(10): 172-177
    [6]
    Wang Shuai, Lv Shuzhen, Zhao Jie, et al. Preparation of mineral admixture for concrete with high titanium slag[J]. Journal of Southwest University of Science and Technology, 2021,36(1):28−34. (王帅, 吕淑珍, 赵杰, 等. 高钛矿渣制备混凝土用矿物掺合料研究[J]. 西南科技大学学报, 2021,36(1):28−34.

    Wang Shuai, Lv Shuzhen, Zhao Jie, et al. Preparation of mineral admixture for concrete with high titanium slag[J]. Journal of Southwest University of Science and Technology, 2021, 36(1): 28-34
    [7]
    Omeid Rahmani. An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration[J]. Journal of CO2 Utilization, 2020,(35):265−671.
    [8]
    Chen Feixiang, Shui Zhonghe, Ding Sha, et al. Optimization design research on the mix proportion of persulphated phosphogypsum-slag cement concrete[J]. Journal of Wuhan University of Technology, 2013,35(11):8−13. (陈飞翔, 水中和, 丁沙, 等. 过硫磷石膏矿渣水泥混凝土的配合比优化设计研究[J]. 武汉理工大学学报, 2013,35(11):8−13.

    Chen Feixiang, Shui Zhonghe, Ding Sha, et al. Optimization design research on the mix proportion of persulphated phosphogypsum-slag cement concrete[J]. Journal of Wuhan University of Technology, 2013, 35(11): 8-13.
    [9]
    Zhang Yue, Wang Hongjie, Yang Lin, et al. Influence of phosphogypsum particle size on properties and microstructure of wet-mixed mortar[J]. Bulletin of the Chinese Ceramic Society, 2022,41(8):2836−2843. (张粤, 王宏杰, 杨林, 等. 磷石膏粒径对湿拌砂浆性能及微观结构的影响研究[J]. 硅酸盐通报, 2022,41(8):2836−2843.

    Zhang Yue, Wang Hongjie, Yang Lin, et al. Influence of phosphogypsum particle size on properties and microstructure of wet-mixed mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2836-2843.
    [10]
    Xie Jianhai, Kang Huning, Xiang Renke, et al. Study on performance of fluorogypsum composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2013,32(4):772−775. (谢建海, 亢虎宁, 向仁科, 等. 氟石膏复合胶凝材料的性能研究[J]. 硅酸盐通报, 2013,32(4):772−775.

    Xie Jianhai, Kang Huning, Xiang Renke, et al. Study on performance of fluorogypsum composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(4): 772-775
    [11]
    Ma Yuan, Fan Chuangang, Wu You, et al. Preparation and characterization of persulfur titanium gypsum slag cement[J]. Non-metallic Mines, 2016,39(6):41−44. (马远, 樊传刚, 吴悠, 等. 过硫钛石膏矿渣水泥的制备与性能表征[J]. 非金属矿, 2016,39(6):41−44. doi: 10.3969/j.issn.1000-8098.2016.06.013

    Ma Yuan, Fan Chuangang, Wu You, et al. Preparation and characterization of persulfur titanium gypsum slag cement[J]. Non-metallic Mines, 2016, 39(6): 41-44 doi: 10.3969/j.issn.1000-8098.2016.06.013
    [12]
    Li Jingwei, Wang Wenlong, Xu Dong, et al. Preparation of sulfoaluminate cementitious material using harmful titanium gypsum: material properties and heavy metal immobilization characteristics[J]. Waste Disposal & Sustainable Energy, 2020,2(2):127−137.
    [13]
    Zhang Jiufu, Yan Yun, Hu Zhihua. Preparation and characterization of foamed concrete with Ti-extracted residues and red gypsum[J]. Construction and Building Materials, 2018,171:109−119.
    [14]
    Li Liangyuan, Shi Zongli, Ai Yongping. Alkaline activation of gypsum-granulated blast furnace slag cementing materials[J]. Journal of the Chinese Ceramic Society, 2008,(3):405−410. (黎良元, 石宗利, 艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J]. 硅酸盐学报, 2008,(3):405−410.

    Li Liangyuan, Shi Zongli, Ai Yongping. Alkaline activation of gypsum-granulated blast furnace slag cementing materials[J]. Journal of the Chinese Ceramic Society, 2008(3): 405-410
    [15]
    Chen Shikun, Zhang Yajun, Yan Dongming, et al. The influence of Si/Al ratio on sulfate durability of metakaolin-based geopolymer[J]. Construction and Building Materials, 2020,265(2):120735.
    [16]
    郝忠卿, 高阳, 张翛, 等. 碱激发煤液化残渣地聚物力学及微观特性研究[J/OL]. 建筑材料学报: 1-12[2023-02-23].

    Hao Zhongqing, Gao Yang, Zhang Xiao, et al. Study on the mechanics and microscopic properties of direct coal liquefaction residue based geopolymer activated by alkali activator[J/OL]. Journal of Building Materials, 1-12[2023-02-23]
    [17]
    Ivanov K S, Korotkov E A. Effect of sodium silicate slurries on the properties of alkali-activated materials[J]. Inorganic Materials, 2017,53(9):973−979. doi: 10.1134/S0020168517090096
    [18]
    Jiang Yong, Jia Lujun, Wen Mengyuan, et al. Preparation of alkali-activated fly ash /steel slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2019,38(7):2152−2156, 2161. (蒋勇, 贾陆军, 文梦媛, 等. 碱激发粉煤灰/钢渣胶凝材料的制备[J]. 硅酸盐通报, 2019,38(7):2152−2156, 2161.

    Jiang Yong, Jia Lujun, Wen Mengyuan, et al. Preparation of alkali-activated fly ash /steel slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2152-2156, 2161
    [19]
    Zhang Jun, Chen Haoyu, Hou Dongwei. Development of shrinkage and internal moisture in cement paste mortar and concrete at early age[J]. Journal of Building Materials, 2011,14(3):287−292. (张君, 陈浩宇, 侯东伟. 水泥净浆、砂浆及混凝土早期收缩与内部湿度发展分析[J]. 建筑材料学报, 2011,14(3):287−292.

    Zhang Jun, Chen Haoyu, Hou Dongwei. Development of shrinkage and internal moisture in cement paste mortar and concrete at early age[J]. Journal of Building Materials, 2011, 14(3): 287-292
    [20]
    Gu Yamin, Fang Yonghao. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement-a short review[J]. Journal of the Chinese Ceramic Society, 2012,40(1):76−84. (顾亚敏, 方永浩. 碱矿渣水泥的收缩与开裂特性及其减缩与增韧[J]. 硅酸盐学报, 2012,40(1):76−84.

    Gu Yamin, Fang Yonghao. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement-a short review[J]. Journal of the Chinese Ceramic Society, 2012, 40(1): 76-84
    [21]
    Cartwright C, Rajabipour F, Radlińska A. Shrinkage characteristics of alkaliactivated slag cements[J]. Journal of Materials in Civil Engineering, 2015, 27(7): B4014007: 1-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (71) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return