Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Xie Hao, Li Gang, Lv Xuewei, Sun Xiaodong, He Haixi. Effect of preformed calcium ferrite addition on sintering behavior of vanadium titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 117-124. doi: 10.7513/j.issn.1004-7638.2023.04.018
Citation: Xie Hao, Li Gang, Lv Xuewei, Sun Xiaodong, He Haixi. Effect of preformed calcium ferrite addition on sintering behavior of vanadium titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 117-124. doi: 10.7513/j.issn.1004-7638.2023.04.018

Effect of preformed calcium ferrite addition on sintering behavior of vanadium titanomagnetite

doi: 10.7513/j.issn.1004-7638.2023.04.018
  • Received Date: 2022-12-23
  • Publish Date: 2023-08-30
  • In view of the problems of low yield, poor strength and high energy consumption in the sintering process of vanadium titanomagnetite, a new sintering technology of preformed calcium ferrite is proposed in this paper, and its feasibility and theoretical basis are revealed through the tablet sintering and thermal analysis test. The results show that with the increase of substitution ratio (preformed calcium ferrite to partially substitute CaO), the microstructure of roasted products changes from granular structure to melting corrosion structure, the content of SFCA increases, while perovskite content decreases. In addition, the quantity of melts increases, the coalesce of sintering bubbles is promoted, the average porosity decreases from 42.9% to 36.2%, and the densification of the matrix is promoted. The formation of calcium ferrite melts in the heating process can be divided into three reactions, according to the formation temperature from low to high, it is the eutectic reaction of CF+CF2 → L, the melting of SFCA-I and SFCA, respectively; the addition of preformed calcium ferrite can reduce the generation temperature of initial melts, and increase the total sintering melts by about 9 %; promote the melting of iron oxides into the initial melts, increase the content of calcium ferrite, and promote solid-liquid assimilation reaction.
  • loading
  • [1]
    Ren Yunfu, Yang Lixiang. Agglomeration mechanism of Panzhihua titanomagnetite concentrate and the behavior of titanium in sintering process[J]. Iron and Steel, 1986,(9):11−17. (任允芙, 杨李香. 攀钢烧结矿的固结机理及钛在烧结过程中的行为[J]. 钢铁, 1986,(9):11−17.

    Ren Yunfu, Yang Lixiang. Agglomeration mechanism of Panzhihua titanomagnetite concentrate and the behavior of titanium in sintering process[J]. Iron and Steel, 1986(9): 11-17.
    [2]
    He Muguang. Effect of w(TiO2) on sintering properties of high titanium vanadium-titanium magnetite[J]. Iron and Steel, 2016,51(5):9−16. (何木光. w(TiO2)对高钛钒钛磁铁烧结矿性能的影响[J]. 钢铁, 2016,51(5):9−16.

    He Muguang. Effect of w(TiO2) on sintering properties of high titanium vanadium-titanium magnetite[J]. Iron and Steel, 2016, 51(5): 9-16.
    [3]
    Paananen T, Kinnunen K. Effect of TiO2-content on reduction of iron ore agglomerates[J]. Steel Research International, 2009,80(6):408−414.
    [4]
    Webster N A S, Pownceby M I, Madsen I C, et al. Effect of oxygen partial pressure on the formation mechanisms of complex Ca-rich ferrites[J]. ISIJ International, 2013,53(5):774−781. doi: 10.2355/isijinternational.53.774
    [5]
    Ding C, Lv X, Chen Y, et al. Reaction sequence and formation kinetics of perovskite by calcium ferrite–titania reaction[J]. Journal of Alloys and Compounds, 2019,789:537−546. doi: 10.1016/j.jallcom.2019.02.325
    [6]
    Jiang Dajun, Du Sihong, He Muguang, et al. Experimental research on sintering performance influence of blue carbon as a new type of fuel[J]. Energy for Metallurgical Industry, 2017,36(6):16−20. (蒋大军, 杜斯宏, 何木光, 等. 兰炭用作燃料对烧结性能影响的试验研究[J]. 冶金能源, 2017,36(6):16−20.

    Jiang Dajun, Du Sihong, He Muguang, et al. Experimental research on sintering performance influence of blue carbon as a new type of fuel[J]. Energy for Metallurgical Industry, 2017, 36(6): 16-20.
    [7]
    Hu Peng, Rao Jiating, Fu Weiguo, et al. Effect of SiO2 and CaO content on the high-titanium V-Ti sinter's performance[J]. Sintering and Pelletizing, 2017,42(3):16−20. (胡鹏, 饶家庭, 付卫国, 等. 高钛型钒钛烧结矿不同硅钙水平研究[J]. 烧结球团, 2017,42(3):16−20.

    Hu Peng, Rao Jiating, Fu Weiguo, et al. Effect of SiO2 and CaO content on the high-titanium V-Ti sinter's performance[J]. Sintering and Pelletizing, 2017, 42(3): 16-20.
    [8]
    He Muguang, Yi Kai, He Xuan, et al. Sintering performance research on sinters of different basicity preparation by high titanium magnetite[J]. Research on Iron and Steel, 2015,43(2):5−9. (何木光, 易凯, 何宣, 等. 高钛磁铁矿制备的不同碱度烧结矿的性能研究[J]. 钢铁研究, 2015,43(2):5−9.

    He Muguang, Yi Kai, He Xuan, et al. Sintering performance research on sinters of different basicity preparation by high titanium magnetite[J]. Research on Iron and Steel, 2015, 43(2): 5-9.
    [9]
    Li Jinming, Zhang Yixian, Li Yuanying. The research of agglomeration of 59-grade magnetic mineral concentrate with V-Ti made in Baima[J]. Sichuan Metallurgy, 2008,(3):9−14. (李劲明, 张义贤, 李媛英. 高品位白马钒钛磁铁精矿烧结试验研究[J]. 四川冶金, 2008,(3):9−14.

    Li Jinming, Zhang Yixian, Li Yuanying. The research of agglomeration of 59-grade magnetic mineral concentrate with V-Ti made in Baima[J]. Sichuan Metallurgy, 2008(3): 9-14.
    [10]
    Gan Qin, He Qingli, Deng Jun. The reasonable content of FeO in vanadium-titanium sinter[J]. Yunnan Metallurgy, 2000,(6):19−23. (甘勤, 何庆莉, 邓君. 钒钛烧结矿适宜FeO含量的研究[J]. 云南冶金, 2000,(6):19−23.

    Gan Qin, He Qingli, Deng Jun. The reasonable content of FeO in vanadium-titanium sinter[J]. Yunnan Metallurgy, 2000(6): 19-23.
    [11]
    He Muguang, Zhang Yixian, Song Jian, et al. Sintering of V-Ti magnetite concentrate particles prefabricated[J]. China Metallurgy, 2012,22(11):35−38. (何木光, 张义贤, 宋剑, 等. 钒钛磁铁精矿预制粒烧结研究[J]. 中国冶金, 2012,22(11):35−38.

    He Muguang, Zhang Yixian, Song Jian, et al. Sintering of V-Ti magnetite concentrate particles prefabricated[J]. China Metallurgy, 2012, 22(11): 35-38.
    [12]
    Jiang Dajun, He Muguang, Guo Gang, et al. Experimental research on sintering of vanadium and titanium magnetite concentrate with addition of boride[J]. Sintering and Pelletizing, 2012,37(1):6−11. (蒋大军, 何木光, 郭刚, 等. 钒钛磁铁精矿添加硼化物烧结试验研究[J]. 烧结球团, 2012,37(1):6−11. doi: 10.3969/j.issn.1000-8764.2012.01.002

    Jiang Dajun, He Muguang, Guo Gang, et al. Experimental research on sintering of vanadium and titanium magnetite concentrate with addition of boride[J]. Sintering and Pelletizing, 2012, 37(1): 6-11. doi: 10.3969/j.issn.1000-8764.2012.01.002
    [13]
    He Muguang, Lin Qiangu, Zhang Yixian. Influence of size distribution of vanadium titanium magnetite concentrate on sintering performance[J]. Iron and Steel, 2010,45(3):27−31. (何木光, 林千谷, 张义贤. 钒钛磁铁精矿粒度对烧结性能的影响[J]. 钢铁, 2010,45(3):27−31.

    He Muguang, Lin Qiangu, Zhang Yixian. Influence of size distribution of vanadium titanium magnetite concentrate on sintering performance[J]. Iron and Steel, 2010, 45(3): 27-31.
    [14]
    He Muguang, Xiao Jun, Guo Gang, et al. Study on sintering large ratio of high-grade ore of alkaline titanium vanadium[J]. China Metallurgy, 2013,23(2):21−25. (何木光, 肖均, 郭刚, 等. 大富矿配比高碱度钒钛矿烧结制度研究[J]. 中国冶金, 2013,23(2):21−25.

    He Muguang, Xiao Jun, Guo Gang, et al. Study on sintering large ratio of high-grade ore of alkaline titanium vanadium[J]. China Metallurgy, 2013, 23(2): 21-25.
    [15]
    Yu Zhengwei, Li Guanghui, Jiang Tao, et al. Effect of basicity on titanomagnetite concentrate sintering[J]. Transactions of the Iron & Steel Institute of Japan, 2015,55(4):907−909.
    [16]
    Li Gang, Ding Chengyi, Xuan Senwei, et al. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018,40(11):1317-1324. (李刚, 丁成义, 宣森炜, 等. 铁酸钙与赤铁矿非等温还原动力学[J]. 工程科学学报, 2018,40(11):1317-1324.

    Li Gang, Ding Chengyi, Xuan Senwei, et al. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018, 40(11): 8.
    [17]
    Liu D, Evans G, Loo C E. Iron ore sinter structure development under realistic thermal conditions[J]. Chemical Engineering Research and Design, 2018,130:129−137. doi: 10.1016/j.cherd.2017.09.025
    [18]
    Harvey T, Honeyands T, O'Dea D, et al. Sinter strength and pore structure development using analogue tests[J]. ISIJ International, 2020,60(1):73−83. doi: 10.2355/isijinternational.ISIJINT-2019-247
    [19]
    Scarlett N, Pownceby M I, Madsen I C, et al. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter[J]. Metallurgical & Materials Transactions B, 2004,35(5):929−936.
    [20]
    Yang N, Guo X M, Saito N, et al. Effect of MgO on formation and crystallization behaviors of calcium ferrite during heating and cooling processes[J]. ISIJ International, 2018,58(8):1406−1412. doi: 10.2355/isijinternational.ISIJINT-2018-028
    [21]
    Guo Xingmin, Zhang Yunmao, Zhang Mei, et al. Study of TG-DSC method on sintering performance of iron ores imported in Laiwu steel[J]. Iron and Steel, 2004,39(8):34-37. (郭兴敏, 张允茂, 张梅, 等. TG-DSC法对莱钢进口铁矿粉烧结性能的研究[J]. 钢铁, 2004,39(8):34-37. doi: 10.3321/j.issn:0449-749X.2004.08.005

    Guo Xingmin, Zhang Yunmao, Zhang Mei, et al. Study of TG-DSC method on sintering performance of iron ores imported in Laiwu steel[J]. Iron and Steel, 2004, 39(8): 4. doi: 10.3321/j.issn:0449-749X.2004.08.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (112) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return