Volume 44 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Xu Lin, Pei Qunwu, Li Yang, Han Zefeng, Yang Shuo, Wang Jianyu. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019
Citation: Xu Lin, Pei Qunwu, Li Yang, Han Zefeng, Yang Shuo, Wang Jianyu. Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 125-134. doi: 10.7513/j.issn.1004-7638.2023.04.019

Investigation of multiphase transport behaviors in a FTSR mold during electromagnetic continuous casting process

doi: 10.7513/j.issn.1004-7638.2023.04.019
  • Received Date: 2022-11-10
  • Publish Date: 2023-08-30
  • For the research object of flexible thin slab rolling (FTSR) funnel-shaped mold, a three-dimensional (3-D) multi-field coupling mathematical model was established for describing the electromagnetic braking (EMBr) continuous casting process. To investigate the metallurgical effect of Ruler-EMBr device, the effects of various electromagnetic parameters on the behaviors of molten steel flow, heat transfer, solidification, and inclusions motion in the FTSR mold were discussed. The results indicate that the application of Ruler-EMBr can improve the uniformity of molten steel temperature distribution and reduce the penetration depth of downward backflow in the FTSR mold. This is beneficial to the floating removal of inclusions entrained in the downward backflow. Moreover, it is also conducive to the upward backflow to transport more heat to the meniscus region, avoiding slag solidification and slag rim formation. The parametric study also shows that the molten steel surface velocity can be reduced and the surface fluctuation at the upper ports of submerged entry nozzle (SEN) can be controlled with the increase of magnetic flux density appropriately. When the magnetic flux density reaches to 0.3 T, the maximum molten steel surface velocity decreases to 0.27 m/s, and the surface peak value at the upper ports of SEN decreases to 7.3 mm.
  • loading
  • [1]
    Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. Iron Steel Vanadium Titanium, 2021,42(5):138−148. (杨亚迪, 赵晶, 崔剑征. 三相氩气搅拌钢包内界面行为及混合现象的数值模拟[J]. 钢铁钒钛, 2021,42(5):138−148. doi: 10.7513/j.issn.1004-7638.2021.05.022

    Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022
    [2]
    Vakhrushev A, Wu M, Ludwig A, et al. Numerical investigation of shell formation in thin slab casting of funnel-type mold[J]. Metall. Mater. Trans. B, 2014,45(3):1024−1037. doi: 10.1007/s11663-014-0030-2
    [3]
    Liu H, Yang C, Zhang H, et al. Numerical simulation of fluid flow and thermal characteristics of thin slab in the funnel-type molds of two casters[J]. ISIJ Int., 2011,51(3):392−401. doi: 10.2355/isijinternational.51.392
    [4]
    Zhang L S, Zhang X F, Wang B, et al. Numerical analysis of the influences of operational parameters on the braking effect of EMBr in a CSP funnel-type mold[J]. Metall. Mater. Trans. B, 2014,45(1):295−306. doi: 10.1007/s11663-013-9948-z
    [5]
    Tian X Y, Li B W, He J C. Electromagnetic brake effects on the funnel shape mold of a thin slab caster based on a new type magnet[J]. Metall. Mater. Trans. B, 2009,40(4):596−604. doi: 10.1007/s11663-009-9246-y
    [6]
    Thunman M, Eckert S, Hennig O. Study on the formation of open-eye and slag entrainment in gas stirred ladle[J]. Steel Res. Int., 2007,78(12):849−856. doi: 10.1002/srin.200706297
    [7]
    Hwang Y S, Cha P R, Nam H S, et al. Numerical analysis of the influences of operational parameters on the fluid flow and meniscus shape in slab caster with EMBr[J]. ISIJ Int., 1997,37(7):659−667. doi: 10.2355/isijinternational.37.659
    [8]
    Zhu Miaoyong, Cai Zhaozhen. Heat transfer behavior and homogenous solidification control for high-speed continuous casting slab mold[J]. Chinese Journal of Engineering, 2022,44(4):703−711. (朱苗勇, 蔡兆镇. 高速连铸结晶器内凝固传热行为及其均匀性控制[J]. 工程科学学报, 2022,44(4):703−711. doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204021

    Zhu Miaoyong, Cai Zhaozhen. Heat transfer behavior and homogenous solidification control for high-speed continuous casting slab mold[J]. Chinese Journal of Engineering, 2022, 44(4): 703-711. doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204021
    [9]
    Zhu Miaoyong. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and Steel, 2019,54(8):21−36. (朱苗勇. 新一代高效连铸技术发展思考[J]. 钢铁, 2019,54(8):21−36. doi: 10.13228/j.boyuan.issn0449-749x.20190213

    Zhu Miaoyong. Some considerations for new generation of high-efficiency continuous casting technology development[J]. Iron and steel, 2019, 54(8): 21-36. doi: 10.13228/j.boyuan.issn0449-749x.20190213
    [10]
    Liu Z, Vakhrushev A, Wu M, et al. Effect of an electrically-conducting wall on transient magnetohydrodynamic flow in a continuous-casting mold with an electromagnetic brake[J]. Metals, 2018,8(8):609−623. doi: 10.3390/met8080609
    [11]
    Schurmann D, Glavinic´ I, Willers B, et al. Impact of the electromagnetic brake position on the flow structure in a slab continuous casting mold: An experimental parameter study[J]. Metall. Mater. Trans. B, 2020,51(1):61−78. doi: 10.1007/s11663-019-01721-x
    [12]
    Wang Y F, Zhang L F. Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake[J]. Metall. Mater. Trans. B, 2011,42(6):1319−1351. doi: 10.1007/s11663-011-9554-x
    [13]
    Jin K, Vanka S P, Thomas B G. Large eddy simulations of the effects of EMBr and SEN submergence depth on turbulent flow in the mold region of a steel caster[J]. Metall. Mater. Trans. B, 2017,48(1):162−178. doi: 10.1007/s11663-016-0801-z
    [14]
    Sarkar S, Singh V, Ajmani S K, et al. Effect of double ruler magnetic field in controlling meniscus flow and turbulence intensity distribution in continuous slab casting mold[J]. ISIJ Int., 2016,56(12):2181−2190. doi: 10.2355/isijinternational.ISIJINT-2016-313
    [15]
    Thomas B G, Singh R, Vanka S P, et al. Effect of single-ruler electromagnetic braking (EMBr) location on transient flow in continuous casting[J]. JMSP, 2015,15(1):93−104.
    [16]
    Yin Y B, Zhang J M. Mathematical modeling on transient multiphase flow and slag entrainment in continuously casting mold with double-ruler EMBr through LES+VOF+DPM method[J]. ISIJ Int., 2021,61(3):853−864. doi: 10.2355/isijinternational.ISIJINT-2020-592
    [17]
    Sarkar S, Singh V, Ajmani S K, et al. Effect of argon injection in meniscus flow and turbulence intensity distribution in continuous slab casting mold under the influence of double ruler magnetic field[J]. ISIJ Int., 2018,58(1):68−77. doi: 10.2355/isijinternational.ISIJINT-2017-448
    [18]
    Hernandez S G, Guzman C H G, Davila R M, et al. Modeling study of EMBr effects on the detrimental dynamic distortion phenomenon in a funnel thin slab mold[J]. Crystals, 2020,10(11):958−976. doi: 10.3390/cryst10110958
    [19]
    Li Z, Zhang L T, Ma D Z, et al. A narrative review: the electromagnetic field arrangement and the “braking” effect of electromagnetic brake (EMBr) technique in slab continuous casting[J]. Metall Res Technol., 2021,118(2):218−234. doi: 10.1051/metal/2021016
    [20]
    Cai Zhaozhen, Zhu Miaoyong. Simulation of thermal behavior during steel solidification in slab continuous casting mold[J]. Acta Metallurgica Sinica, 2011,47(6):678−687. (蔡兆镇, 朱苗勇. 板坯连铸结晶器内钢凝固过程热行为研究[J]. 金属学报, 2011,47(6):678−687.

    Cai Zhaozhen, Zhu Miaoyong. Simulation of thermal behavior during steel solidification in slab continuous casting mold[J]. Acta Metallurgica Sinica, 2011, 47(6): 678-687.
    [21]
    Gong Jiarui, Liu Zhongqiu, Wu Yingdong, et al. Transient movement and capture behavior of dispersed argon bubbles in continuous casting mold[J]. Journal of Iron and Steel Research, 2022,34(5):461−469. (宫佳睿, 刘中秋, 吴颖东, 等. 连铸结晶器内弥散氩气泡的瞬态运动和捕捉行为[J]. 钢铁研究学报, 2022,34(5):461−469.

    Gong Jiarui, Liu Zhongqiu, Wu Yingdong, et al. Transient movement and capture behavior of dispersed argon bubbles in continuous casting mold[J]. Journal of Iron and Steel Research, 2022, 34(5): 461-469.
    [22]
    Tian Guichang, Ji Chenxi, Gao Rongzheng, et al. Physical simulation of influence of mold nozzle structure on mold flux entrapment[J]. Steelmaking, 2021,37(6):38−44,58. (田贵昌, 季晨曦, 高荣正, 等. 连铸结晶器内水口结构对卷渣行为影响的物理模拟[J]. 炼钢, 2021,37(6):38−44,58.

    Tian Guichang, Ji Chenxi, Gao Rongzheng, et al. Physical simulation of influence of mold nozzle structure on mold flux entrapment[J]. Steelmaking, 2021, 37(6): 38-44, 58.
    [23]
    Deok K, Woo K, Kee C. Numerical simulation of the coupled turbulent flow and macroscopic solidification in continuous casting with electromagnetic brake[J]. ISIJ Int., 2000,40(7):670−676. doi: 10.2355/isijinternational.40.670
    [24]
    刘中秋. 连铸结晶器内多相非均匀传递机制的多尺度模拟[D]. 沈阳: 东北大学, 2015.

    Liu Zhongqiu. Multi-scale modeling of multiphase and inhomogeneous transmission mechanisms in continuous casting mold [D]. Shenyang: Northeastern University, 2015.
    [25]
    Aboutalebi M, Hasan M, Guthrie R. Coupled turbulent flow, heat, and solute transport in continuous casting processes[J]. Metall. Mater. Trans. B, 1995,26(4):731−744. doi: 10.1007/BF02651719
    [26]
    Lait J, Brimacombe J, Weinberg F. Mathematical modeling of heat flow in the continuous casting of steel[J]. Ironmaking & Steelmaking, 1974,1(2):90−97.
    [27]
    Xu L, Wang E, Karcher C, et al. Numerical simulation of the effects of horizontal and vertical EMBr on jet flow and mold level fluctuation in continuous casting[J]. Metall. Mater. Trans. B, 2018,49(5):2779−2793. doi: 10.1007/s11663-018-1342-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (85) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return