Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Zhang Qian, Ma Lan, Yang Shaoli, Zhu Kuisong. Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013
Citation: Zhang Qian, Ma Lan, Yang Shaoli, Zhu Kuisong. Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 84-92. doi: 10.7513/j.issn.1004-7638.2023.05.013

Study on wear resistance of nitriding coatings of Ti-Al base multielement alloys

doi: 10.7513/j.issn.1004-7638.2023.05.013
  • Received Date: 2022-07-26
    Available Online: 2023-11-04
  • Publish Date: 2023-10-31
  • In this paper, the titanium-aluminum-based multi-component alloy was prepared from Panzhihua acid-soluble titanium slag, aluminum powder and calcium oxide. After directly nitriding treatment at different temperatures and different time, a nitrided layer was obtained. Scanning electron microscopy, X-ray diffractometer, microhardness tester, friction and wear testing machine, and three-dimensional topography instrument were used to detect and analyze the properties of the nitriding layer. The results show that the surface hardness and wear resistance of Ti-Al based multielement alloy can be improved by direct nitriding under different conditions. The nitriding temperature has a great effect on the hardness and wear resistance of the alloy. When the nitriding time is 2 h, the optimum nitriding temperature is 800 ℃, the average hardness (HV) of the nitriding layer is up to 698.8, the average friction coefficient is 0.120, the reciprocating friction wear rate is 19.44 mm3/(N·m), and the surface roughness is 0.731 μm. When the nitriding temperature is 900 ℃ and the optimum nitriding time is 3 h, the hardness (HV) of nitriding layer is 682.6, the average friction coefficient is 0.059, the reciprocating friction wear rate is 9.48 mm3/(N·m), and the surface roughness is 0.601 μm.
  • loading
  • [1]
    Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020,49(22):22−28. (郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景[J]. 热加工工艺, 2020,49(22):22−28.

    Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Hot Working Technology, 2020, 49(22): 22-28.
    [2]
    Narayana P L, Li C L, Kim S W, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800 °C[J]. Materials Science and Engineering A, 2019,756:41−45. doi: 10.1016/j.msea.2019.03.114
    [3]
    Chen R, Wang Q, Yang Y H, et al. Brittle-ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys[J]. Intermetallics, 2018,93:47−54. doi: 10.1016/j.intermet.2017.11.009
    [4]
    Song L, Hu X G, Zhang T B, et al. Precipitation behaviors in a quenched high Nb-containing TiAl alloy during annealing[J]. Intermetallics, 2017,89:79−85. doi: 10.1016/j.intermet.2017.05.025
    [5]
    Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016,15:876−882. doi: 10.1038/nmat4677
    [6]
    Wu H, Fan G H, Geng L, et al. Nanoscale origins of the oriented precipitation of Ti3Al in Ti-Al systems[J]. Scripta Materialia, 2016,125:34−38. doi: 10.1016/j.scriptamat.2016.07.037
    [7]
    Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titanium aluminides[J]. Progress in Materials Science, 2016,81:55−124. doi: 10.1016/j.pmatsci.2016.01.001
    [8]
    潘健生, 胡明娟. 热处理工艺学[M]. 北京: 高等教育出版社, 2009: 514-527.

    Pan Jiansheng, Hu Mingjuan. Heat treatment technology[M]. Beijing: Higher Education Press, 2009: 514-527.
    [9]
    马鹏飞, 李美兰. 热处理技术[M]. 北京: 化学工业出版社, 2009: 116-127.

    Ma Pengfei, Li Meilan. Heat treatment technology[M]. Beijing: Chemical Industry Press, 2009: 116-127.
    [10]
    Stappen M Van, Stals L M, Kerkhofs M, et al. State of the art for the industrial use of ceramic PVD coatings[J]. Surface and Coatings Technology, 1995,74-75(2):629−633.
    [11]
    Zhang Minghai, Yang Gangbin. Research progress of Lanxide materials[J]. Journal of Luoyang Technical College, 2006,(1):5−7. (张明海, 杨刚宾. Lanxide材料及其研究进展[J]. 洛阳工业高等专科学校学报, 2006,(1):5−7.

    Zhang Minghai, Yang Gangbin. Research progress of Lanxide materials[J]. Journal of Luoyang Technical College, 2006(1): 5-7.
    [12]
    史程程. P/M 钛铝基合金的热变形行为与等温锻造/扩散连接工艺[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Shi Chengcheng. Thermal deformation behavior and isothermal forging/diffusion bonding process of P/M Ti-Al base alloys[D]. Harbin: Harbin Institute of Technology, 2019.
    [13]
    Li Yong, Wang Qiulin, Zhu Jinbo, et al. Technology status and prospect of titanium aluminum alloy prepared by powder metallurgy[J]. Journal of Chengdu Aeronautical Vocational and Technical College, 2020,36(3):74−77,80. (李勇, 王秋林, 朱金波, 等. 粉末冶金制备钛铝合金技术现状及展望[J]. 成都航空职业技术学院学报, 2020,36(3):74−77,80.

    Li Yong, Wang Qiulin, Zhu Jinbo, et al. Technology status and prospect of titanium aluminum alloy prepared by powder metallurgy[J]. Journal of Chengdu Aeronautical Vocational and Technical College, 2020, 36(3): 74-77+80.
    [14]
    Li Jun, Wu Enhui, Yang Shaoli, et al. Study on vacuum magnetic levitation refining of titanium aluminum alloy prepared by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2019,40(2):41−49. (李军, 吴恩辉, 杨绍利, 等. 电铝热还原法制备的钛铝合金真空磁悬浮精炼研究[J]. 钢铁钒钛, 2019,40(2):41−49.

    Li Jun, Wu Enhui, Yang Shaoli, et al. Study on vacuum magnetic levitation refining of titanium aluminum alloy prepared by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 41-49.
    [15]
    Li Jun, Lu Xiongang, Yang Shaoli, et al. Theoretical and experimental study on preparation of TiAl alloy by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2017,38(5):46−52. (李军, 鲁雄刚, 杨绍利, 等. 电铝热还原法制备TiAl合金理论及试验研究[J]. 钢铁钒钛, 2017,38(5):46−52.

    Li Jun, Lu Xiongang, Yang Shaoli, et al. Theoretical and experimental study on preparation of TiAl alloy by electrothermic reduction[J]. Iron Steel Vanadium Titanium, 2017, 38(5): 46-52.
    [16]
    Piao Rongxun, Yang Shaoli, Ma Lan, et al. Vacuum electromagnetic levitation melting of Ti-Al based alloy prepared by aluminothermic reduction of acid soluble Ti bearing slag[J]. Metals and Materials International, 2020,26:130−142. doi: 10.1007/s12540-019-00295-2
    [17]
    Li Y M, Yue Q B, He H B, et al. Friction and wear characteristics of 20Cr steel substrate and TiAlN coating under different lubrication conditions[J]. International Journal of Precision Engineering and Manufacturing, 2018,19(10):1521−1528. doi: 10.1007/s12541-018-0179-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (52) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return