Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Wang Shun, Chen Min, Guo Qing, Cheng Weihao. Evolution characteristics of cavitation bubble size in liquid steel under power ultrasound[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 122-129. doi: 10.7513/j.issn.1004-7638.2023.05.019
Citation: Wang Shun, Chen Min, Guo Qing, Cheng Weihao. Evolution characteristics of cavitation bubble size in liquid steel under power ultrasound[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 122-129. doi: 10.7513/j.issn.1004-7638.2023.05.019

Evolution characteristics of cavitation bubble size in liquid steel under power ultrasound

doi: 10.7513/j.issn.1004-7638.2023.05.019
  • Received Date: 2023-01-15
    Available Online: 2023-11-04
  • Publish Date: 2023-10-31
  • The effects of sound pressure amplitude, frequency, initial equilibrium radius of the cavitation bubble and gas multiplicity index on the cavitation bubble size in the liquid steel were investigated by solving the function of the power ultrasonic action period T and the cavitation bubble radius R using the Fourth-Order Runge Kutta method by Matlab software. The results showed that steady-state cavitation occurred in the range of 1~2P0, and the peak radius of cavitation bubble increased with the increase in the frequency and initial equilibrium radius. The initial equilibrium radius increased from 5 μm to 50 μm, and the cavitation bubble peak radius was increased by 0.35 μm and 90.75 μm, respectively. The peak radius of the cavitation bubble was increased by only 0.84 μm when the frequency increased from 20 kHz to 80 kHz. The transient cavitation occurred in the range of 3~100P0. The peak radius of the cavitation bubble increased from 423.01 μm to 896.12 μm when the initial equilibrium radius was increased from 5 μm to 20 μm, while the peak radius of the cavitation bubble decreased to 544.16 μm when the initial equilibrium radius was increased to 50 μm. The cavitation bubble underwent two expansion and contraction processes before collapsing with a peak cavitation bubble radius of 488.05 μm at a frequency of 20 kHz. The gas multiplicity index had a little influence on the cavitation effect under the steady-state and transient cavitation conditions. The cavitation bubble peak radius was only decreased by 1.6 μm and 0.35 μm, respectively, when the gas multiplicity index increased from 1 to 1.65.
  • loading
  • [1]
    Xu Wenlin, He Yufang, Wang Yaqiong. Modeling and simulation of bubble motion caused by ultrasound[J]. Journal of Yangzhou University, 2005,8(1):55−59. (许文林, 何玉芳, 王雅琼. 超声空化泡运动方程的求解及过程模拟[J]. 扬州大学学报:自然科学版, 2005,8(1):55−59.

    Xu Wenlin, He Yufang, Wang Yaqiong. Modeling and simulation of bubble motion caused by ultrasound[J]. Journalof Yangzhou University, 2005, 8(1): 55-59.
    [2]
    Wang Jie. Theoretical research of ultrasonic cavitation bubble dynamic equation[J]. Value Engineering, 2010,29(34):38−39. (王捷. 超声空化泡运动方程的理论推导[J]. 价值工程, 2010,29(34):38−39.

    Wang Jie. Theoretical research of ultrasonic cavitation bubble dynamic equation[J]. Value Engineering, 2010, 29(34): 38-39.
    [3]
    Rayleigh J W. On the pressure developed in aliquid during the collapse of a special cavity[J]. Philosophical Magazine, 1917,34(200):94−98.
    [4]
    沈阳. 单一超声空化泡的理论与实验研究及声场内空泡分布标定[D]. 沈阳: 东北大学, 2019.

    Shen Yang. Theoretical & experimental study of a single bubble cavitation aced population of cavitation bubbles in ultrasound field[D]. Shenyang: Northeastern University, 2019.
    [5]
    李林. 超声场下空化泡运动的数值模拟和超声强化传质研究[D]. 成都: 四川大学, 2006.

    Li Lin. Numercial simulation on the motion equation of cavitation bubble and the enhancement of mass transfer due toultrasonic[D]. Chengdu: Sichuan University, 2006.
    [6]
    Kang Shumei, Shen Minggang, Li Chengwei, et al. Behavior of inclusion removal in ladlere fining model by ultrasonic[J]. Iron and Steel, 2012,47(9):30−34. (亢淑梅, 沈明钢, 李成威, 等. 超声波钢包精炼水模夹杂物行为[J]. 钢铁, 2012,47(9):30−34.

    Kang Shumei, Shen Minggang, Li Chengwei, et al. Behavior of inclusion removal in ladlere fining model by ultrasonic[J]. Iron and Steel, 2012, 47(9): 30-34.
    [7]
    Yasui K. Acoustic cavitation and bubble dynamics[M]. Cham, Switzerland: Springer, 2018.
    [8]
    Zhang Ying, Wu Wenhua, Wang Jianyuan. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field[J]. Acta Physica Sinica, 2022,71(24):244303. (张颖, 吴文华, 王建元, 等. 超声场中气泡稳态空化对枝晶生长过程的作用机制[J]. 物理学报, 2022,71(24):244303. doi: 10.7498/aps.71.20221101

    Zhang Ying, Wu Wenhua, Wang Jianyuan. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field[J]. Acta Physica Sinica, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [9]
    Yang Ping. Fast digital simulation based on fourth order Runge Kutta method.[J]. Computer Simulation, 1987,(3):42−44. (杨平. 基于四阶龙格-库塔法的快速数字仿真[J]. 计算机仿真, 1987,(3):42−44.

    Yang Ping. Fast digital simulation based on fourth order Runge Kutta method. [J]. Computer Simulation, 1987(3): 42-44.
    [10]
    Kong Wei, Cang Daqiang, Wang Wenbo. Simulation of evolution process of ultrasonic-cavitation bubble in molten steel[J]. Science Technology and Engineering, 2010,10(35):8696−8701. (孔为, 苍大强, 王文波. 钢液中超声空化泡运动过程模拟[J]. 科学技术与工程, 2010,10(35):8696−8701. doi: 10.3969/j.issn.1671-1815.2010.35.013

    Kong Wei, Cang Daqiang, Wang Wenbo. Simulation of evolution process of ultrasonic-cavitation bubble in molten steel[J]. Science Technology and Engineering, 2010, 10(35): 8696-8701. doi: 10.3969/j.issn.1671-1815.2010.35.013
    [11]
    魏瑞瑞. 超声波辅助铁酸钙生成及结晶基础研究[D]. 重庆: 重庆大学, 2019.

    Wei Ruirui. Fundamental study on the formation and crystallization of calcium ferrite assisted by ultrasonic wave[D]. Chongqing: Chongqing University, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (70) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return