Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Yang Jianwei, Yang Qin, Wu Jing, Zheng Yaxu, Wang Yunhui. Study on solid solution behavior of second phase particles and austenite grain growth law of Nb-Ti high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 139-145. doi: 10.7513/j.issn.1004-7638.2023.05.021
Citation: Yang Jianwei, Yang Qin, Wu Jing, Zheng Yaxu, Wang Yunhui. Study on solid solution behavior of second phase particles and austenite grain growth law of Nb-Ti high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 139-145. doi: 10.7513/j.issn.1004-7638.2023.05.021

Study on solid solution behavior of second phase particles and austenite grain growth law of Nb-Ti high strength steel

doi: 10.7513/j.issn.1004-7638.2023.05.021
  • Received Date: 2022-11-27
    Available Online: 2023-11-04
  • Publish Date: 2023-10-31
  • The solid solution behavior of nanocarbide and austenite grain growth in Nb-Ti microalloyed steel during high temperature heating were studied by means of transmission electron microscope, optical microscope and thermodynamic calculation. The results show that the austenite grain size and size of precipitated phase in Nb-Ti microalloyed steel are affected by heating temperature and holding time. The austenite grain size increases with the improvement of temperature and the extension of holding time. Compared with holding time, heating temperature has a greater influence on grain coarsening rate. The temperature is heated from 950 ℃ to 1300 ℃, and the austenite grain size grows obviously from 28.4 μm to 94.6 μm. When the heating temperature reaches 1200 ℃ and the heat preservation time is gradually extended from 10 min to 120 min, the austenite grains are slowly increasesing from 79.4 μm to 88.5 μm. The small size precipitates in Nb-Ti microalloyed steel gradually dissolves into austenite with the increase of heating temperature. The total amount of carbides in the steel decreases, and the undissolved precipitates are (Ti, Nb) C with a larger size. The atomic ratio of Ti/Nb in the undissolved carbide in steel increases with the increase of heating temperature. As far as thermal stability is concerned, Ti content in carbide is higher than Nb, and its redissolution temperature is higher. The solid solution content of Nb, Ti and C gradually increase with the increase of temperature, and the volume fraction of precipitates in Nb-Ti microalloyed steel gradually decreases. The fine second phase particles in the steel dissolve with the increase of temperature, which greatly weakens their pinning strength to the austenite grain boundary. Therefore, the austenite grain boundary begins to migrate, and the austenite grains begin to coarsen rapidly.
  • loading
  • [1]
    夏继年. 钛微合金钢中纳米碳化钛的析出控制研究[D]. 镇江: 江苏大学, 2018.

    Xia Jinian. Study on precipitation control of nano titanium carbide in titanium microalloyed steel[D]. hengjiang: Jiangsu University, 2018.
    [2]
    Zhang Ruiqi, Liu Zhiwei, Sun Ao, et al. Development of Nb-Ti microalloyed steel plate for high speed train bogie frame[J]. Special Steel, 2020,41(1):32−35. (张瑞琦, 刘志伟, 孙傲, 等. 高速列车转向架构架用Nb-Ti微合金化钢板的研制[J]. 特殊钢, 2020,41(1):32−35. doi: 10.3969/j.issn.1003-8620.2020.01.008

    Zhang Ruiqi, Liu Zhiwei, Sun Ao, et al. Development of Nb-Ti microalloyed steel plate for high speed train bogie frame[J]. Special Steel, 2020, 41(1): 32-35. doi: 10.3969/j.issn.1003-8620.2020.01.008
    [3]
    Yang Gengwei, Lu Jiawei, Sun Hui, et al. Microstructure, mechanical properties and phase transformation behavior of Ti-V microalloyed high-strength hot-strip steel[J]. Journal of Iron and Steel Research, 2019,31(8):726−732. (杨庚蔚, 陆佳伟, 孙辉, 等. Ti-V微合金化热轧高强钢的相变规律及组织性能[J]. 钢铁研究学报, 2019,31(8):726−732. doi: 10.13228/j.boyuan.issn1001-0963.20180220

    Yang Gengwei, Lu Jiawei, Sun Hui, et al. Microstructure, mechanical properties and phase transformation behavior of Ti-V microalloyed high-strength hot-strip steel[J]. Journal of Iron and Steel Research, 2019, 31(8): 726-732. doi: 10.13228/j.boyuan.issn1001-0963.20180220
    [4]
    Dong J, Zhou X, Liu Y, et al. Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering[J]. Materials Science and Engineering:A, 2017,683:215−226. doi: 10.1016/j.msea.2016.12.019
    [5]
    Karmakar A, Biswas S, Mukherjee S, et al. Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel[J]. Materials Science and Engineering:A, 2017,690:158−169. doi: 10.1016/j.msea.2017.02.101
    [6]
    Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy[J]. Iron Steel Vanadium Titanium, 2020,41(3):59−63. (孙 凤, 尹晓丽, 赵 达. 钒微合金化汽车钛合金的轧制工艺优化[J]. 钢铁钒钛, 2020,41(3):59−63. doi: 10.7513/j.issn.1004-7638.2020.03.009

    Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy [J]. Iron Steel Vanadium Titanium, 2020, 41(3): 59-63. doi: 10.7513/j.issn.1004-7638.2020.03.009
    [7]
    Hang Zidi, Feng Yunli, Cui Yan, et al. Mathematical modeling of the recrystallization kinetics of high Ti microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2020,41(1):141−146. (杭子迪, 冯运莉, 崔岩, 等. 高Ti微合金高强钢静态再结晶动力学模型[J]. 钢铁钒钛, 2020,41(1):141−146. doi: 10.7513/j.issn.1004-7638.2020.01.025

    Hang Zidi, Feng Yunli, Cui Yan, et al. Mathematical modeling of the recrystallization kinetics of high Ti microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2020, 41(1): 141-146. doi: 10.7513/j.issn.1004-7638.2020.01.025
    [8]
    Du Yifei, Li Wang, Tian Yaqiang. Application progress of Nb-V-Ti microalloying in TRIP steel for automobile[J]. Heat Treatment of Metals, 2019,44(8):50−56. (杜一飞, 黎旺, 田亚强. Nb-V-Ti微合金化在汽车用TRIP钢中的应用进展[J]. 金属热处理, 2019,44(8):50−56.

    Du Yifei, Li Wang, Tian Yaqiang. Application progress of Nb-V-Ti microalloying in TRIP steel for automobile[J]. Heat Treatment of Metals, 2019, 44(8): 50-56.
    [9]
    Yang Ying, Hou Huaxing, Ma Yupu, et al. Effect of reheating temperature on solid solution and grain growth of second phase particles in Nb, Ti containing steels[J]. Journal of Iron and Steel Research, 2008,(7):38−42. (杨颖, 侯华兴, 马玉璞, 等. 再加热温度对含Nb, Ti钢第二相粒子固溶及晶粒长大的影响[J]. 钢铁研究学报, 2008,(7):38−42.

    Yang Ying, Hou Huaxing, Ma Yupu, et al. Effect of reheating temperature on solid solution and grain growth of second phase particles in Nb, Ti containing steels[J]. Journal of Iron and Steel Research, 2008(07): 38-42.
    [10]
    Narayanasamy R, Parthasarathi N L, Narayanan C S. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions[J]. Materials & Design, 2009,30(4):1310−1324.
    [11]
    Huo Xiangdong, Mao Xinping, Dong Feng. Effect of coiling temperature on the mechanical properties of Ti-microalloyed high strength steel[J]. Journal of University of Science and Technology Beijing, 2013,35(11):1472−1477. (霍向东, 毛新平, 董 锋. 卷取温度对Ti微合金化高强钢力学性能的影响机理[J]. 北京科技大学学报, 2013,35(11):1472−1477. doi: 10.13374/j.issn1001-053x.2013.11.010

    Huo Xiangdong, Mao Xinping, Dong Feng. Effect of coiling temperature on the mechanical properties of Ti-microalloyed high strength steel [J]. Journal of University of Science and Technology Beijing, 2013, 35(11): 1472-1477. doi: 10.13374/j.issn1001-053x.2013.11.010
    [12]
    张建园. 热处理工艺对30 MnSi钢棒组织和力学性能的影响[D]. 济南: 山东大学, 2021.

    Zhang Jianyuan. Effect of heat treatment process on microstructure and mechanical properties of 30 MnSi steel bars[D]. Jinan: Shandong University, 2021.
    [13]
    Zhang Shengzhou, Zhou Chaogang, Duan Ziqing, et al. Analysis of cracking causes of 700 MPa grade beam steel W brace[J]. Nonferrous Metals Science and Engineering, 2022,13(2):82−87. (张声洲, 周朝刚, 段紫晴, 等. 700 MPa级大梁钢W撑开裂原因分析[J]. 有色金属科学与工程, 2022,13(2):82−87.

    Zhang Shengzhou, Zhou Chaogang, Duan Ziqing, et al. Analysis of cracking causes of 700 MPa grade beam steel W brace[J]. Nonferrous Metals Science and Engineering, 2022, 13(02): 82-87.
    [14]
    Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles[J]. Materials Science and Engineering:A, 2013,561:126−135. doi: 10.1016/j.msea.2012.11.019
    [15]
    Bu F Z, Wang X M, Yang S W, et al. Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels[J]. Materials Science & Engineering:A, 2014,(620):22−29.
    [16]
    Xu Y, Zhang W, Sun M, et al. The blocking effect of interphase precipitation on dislocations’ movement in Ti-bearing micro-alloyed steel[J]. Materials Letters, 2015,(139):177−181.
    [17]
    雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 26-36.

    Yong Qilong. The second phase in iron and steel materials[M]. Beijing, Metallurgical Industry Press, 2006: 26-36.
    [18]
    张可. Ti-V-Mo复合微合金化高强度钢组织调控与强化机理研究[D]. 昆明: 昆明理工大学, 2016.

    Zhang Ke. Study on the mechanism of microstructure control and strengthening of Ti-V-Mo composite microalloyed high strength steel[J]. Kunming: Kunming University of Science and Technology, 2016.
    [19]
    Li Liming, Feng Yunli, Yang Lina. Thermodynamic calculation of Ti-containing second phase in Ti microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2019,40(1):118−122. (李立铭, 冯运莉, 杨丽娜. 钛微合金化高强钢含Ti第二相的热力学计算[J]. 钢铁钒钛, 2019,40(1):118−122. doi: 10.7513/j.issn.1004-7638.2019.01.021

    Li Liming, Feng Yunli, Yang Lina. Thermodynamic calculation of Ti-containing second phase in Ti microalloyed high strength steel [J]. Iron Steel Vanadium Titanium, 2019, 40(1): 118-122. doi: 10.7513/j.issn.1004-7638.2019.01.021
    [20]
    Jung J, Park J, Kim J, et al. Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel[J]. Materials Science and Engineering:A, 2011,528(16-17):5529−5535. doi: 10.1016/j.msea.2011.03.086
    [21]
    Wang Z, Sun X, Yang Z, et al. Carbide precipitation in austenite of a Ti–Mo-containing low-carbon steel during stress relaxation[J]. Materials Science and Engineering:A, 2013,573:84−91. doi: 10.1016/j.msea.2013.02.056
    [22]
    Hui Yajun, Pan Hui, Li Wenyuan, et al. Study on the heating system of 1000 MPa Nb-Ti microalloyed ultra high strength steel[J]. Acta Metallurgical Sinica, 2017,53(2):129−139. (惠亚军, 潘辉, 李文远, 等. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017,53(2):129−139.

    Hui Yajun, Pan Hui, Li Wenyuan, et al. Study on the heating system of 1000 MPa Nb-Ti microalloyed ultra high strength steel[J]. Acta Metallurgical Sinica, 2017, 53(02): 129-139.
    [23]
    Lv Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93−98. (吕 勇, 彭 军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93−98.

    Lv Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research [J]. Iron Steel Vanadium Titanium, 2019, 40(3): 93-98.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (79) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return