Volume 44 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Song Yu, Gao Zhijun, Wang Shuize, Yin Jingjing. Study on the hot ductility of titanium microalloyed high-strength beam steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025
Citation: Song Yu, Gao Zhijun, Wang Shuize, Yin Jingjing. Study on the hot ductility of titanium microalloyed high-strength beam steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 167-175. doi: 10.7513/j.issn.1004-7638.2023.05.025

Study on the hot ductility of titanium microalloyed high-strength beam steels

doi: 10.7513/j.issn.1004-7638.2023.05.025
  • Received Date: 2023-06-08
    Available Online: 2023-11-04
  • Publish Date: 2023-10-31
  • High-temperature tensile tests have been conducted to examine the thermoplasticity of titanium microalloyed high-strength beam steels in the temperature range of 600 ℃ to 1300 ℃. Thermo-calc, the thermodynamic calculation software, was used to calculate the main precipitation intervals in various experimental steels. Optical microscopy (OM), field-emission type scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to observe and analyze the microstructural characteristics and the thermal tensile fracture morphology. The findings demonstrate that thermoplasticity declines dramatically with increasing Ti content, and the hot brittle range is gradually lowered and widened in four experimental steels. The 950L steel with the highest Ti content shows the lowest thermoplasticity. The main reason is that the formed proeutectoid ferrite weakens the grain boundary strength and provides conditions for the initiation and propagation of cracks. In addition, microvoids are easily formed between the micron TiN particles and precipitates. Then the microvoids aggregate to form cracks under stress, thus reducing the thermoplasticity of the experimental steel. Therefore, it is suggested that increasing the cooling rate on the premise that the straightening temperature is assured and preventing the precipitation of proeutectoid ferrite and the second phase can effectively improve the thermoplasticity in the third brittle zone.
  • loading
  • [1]
    Li Xiaolin, Lei Chengshuai, Tian Qiang, et al. Nanoscale cementite and microalloyed carbide strengthened Ti bearing low carbon steel plates in the context of newly developed ultrafast cooling[J]. Materials Science and Engineering:A, 2017,698:268−276. doi: 10.1016/j.msea.2017.05.066
    [2]
    Wang Xinhua, Liu Xinyu, Lu Wenjing, et al. Carbide and nitride precipitation and hot ductility of continuous cast steel slabs containing Nb, V, Ti[J]. Journal of Iron and Steel Research, 1998,10(6):36−40. (王新华, 刘新宇, 吕文景,等. 含Nb、V、Ti钢连铸坯中碳、氮化物的析出及钢的高温塑性[J]. 钢铁研究学报, 1998,10(6):36−40. doi: 10.13228/j.boyuan.issn1001-0963.1998.06.008

    Wang Xinhua, Liu Xinyu, Lu Wenjing, et al. Carbide and nitride precipitation and hot ductility of continuous cast steel slabs containing Nb, V, Ti [J]. Journal of Iron and Steel Research, 1998, 10(6): 36-40. doi: 10.13228/j.boyuan.issn1001-0963.1998.06.008
    [3]
    Zheng Shuguo, Davis Claire, Strangwood M. Elemental segregation and subsequent precipitation during solidification of continuous cast Nb-V-Ti high-strength low-alloy steels[J]. Materials Characterization, 2014,95:94−104. doi: 10.1016/j.matchar.2014.06.008
    [4]
    Arıkan Mustafa Merih. Hot ductility behavior of a peritectic steel during continuous casting[J]. Metals, 2015,5(2):986−999. doi: 10.3390/met5020986
    [5]
    Dippenaar Rian, Bernhard Christian, Schider Siegfried, et al. Austenite grain growth and the surface quality of continuously cast steel[J]. Metallurgical and Materials Transactions B, 2014,45(2):409−418. doi: 10.1007/s11663-013-9844-6
    [6]
    Suzuki Hirowo G, Nishimura Satoshi, Yamaguchi Shigehiro. Characteristics of hot ductility in steels subjected to the melting and solidification[J]. Transactions of the Iron and Steel Institute of Japan, 1982,22(1):48−56. doi: 10.2355/isijinternational1966.22.48
    [7]
    Banks K M, Tuling A, Mintz B. Influence of thermal history on hot ductility of steel and its relationship to the problem of cracking in continuous casting[J]. Materials Science and Technology, 2012,28(5):536−542. doi: 10.1179/1743284711Y.0000000094
    [8]
    Vedani Maurizo, Dellasega David, Mannuccii Aldo. Characterization of grain-boundary precipitates after hot-ductility tests of microalloyed steels[J]. ISIJ international, 2009,49(3):446−452. doi: 10.2355/isijinternational.49.446
    [9]
    Mintz Barrie, Crowther D N. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting[J]. International Materials Reviews, 2010,55(3):168−196. doi: 10.1179/095066009X12572530170624
    [10]
    Spradbery C, Mintz B. Influence of undercooling thermal cycle on hot ductility of C-Mn-Al-Ti and C-Mn-Al-Nb-Ti steels[J]. Ironmaking & Steelmaking, 2005,32(4):319−324.
    [11]
    Liu Hongbo, Liu Jianhua, Ding Hao, et al. Influence of Ti on the hot ductility of high-manganese austenitic steels[J]. High Temperature Materials and Processes, 2017,39(4):520−528. (刘洪波, 刘建华, 丁浩,等. 钛和钒对高锰钢高温热延性的影响[J]. 工程科学学报, 2017,39(4):520−528.

    Liu Hongbo, Liu Jianhua, Ding Hao, et al. Influence of Ti on the Hot Ductility of High-manganese Austenitic Steels[J]. High Temperature Materials and Processes, 2017, 39(04): 520-528.
    [12]
    Qian Guoyu, Cheng Guoguang, Hou Zibing. The Influence of the induced ferrite and precipitates of Ti-bearing steel on the ductility of continuous casting slab[J]. High Temperature Materials and Processes, 2015,34(7):611−620.
    [13]
    Beal Coline, Caliskanoglu Ozan, Sommitsch Christof, et al. Influence of thermal history on the hot ductility of Ti-Nb microalloyed steels[C]//Materials Science Forum. Trans Tech Publications Ltd, 2017, 879: 199-204.
    [14]
    Mintz Barrie. The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J]. ISIJ International, 1999,39(9):833−855. doi: 10.2355/isijinternational.39.833
    [15]
    Mintz Barrie, Arrowsmith J M. Hot-ductility behaviour of C-Mn-Nb-Al steels and its relationship to crack propagation during the straightening of continuously cast strand[J]. Metals Technology, 1979,6(1):24−32. doi: 10.1179/030716979803276471
    [16]
    Mintz Barrie. Importance of Ar3 temperature in controlling ductility and width of hot ductility trough in steels, and its relationship to transverse cracking[J]. Materials Science and Technology, 1996,12(2):132−138. doi: 10.1179/026708396790165605
    [17]
    Cheng Zhuo, Liu Jinyue, Wang Shuize, et al. Effect of V on the hot ductility behavior of high strength hot-stamped steels and associated microstructural features[J]. Metallurgical and Materials Transactions A, 2021,52,(7):3140−3151. doi: 10.1007/s11661-021-06308-3
    [18]
    Jiang Xue, Chen Xianmiao, Song Shenhua, et al. Phosphorus-induced hot ductility enhancement of 1Cr–0.5Mo low alloy steel[J]. Materials Science and Engineering:A, 2013,574:46−53. doi: 10.1016/j.msea.2013.02.072
    [19]
    Yuan Shentie, Lai Chaobin, Chen Yingjun. Hot ductility of EQ47 steel and influence of Mn and Cr on it[J]. Heat Treatment of Metals, 2014,39(8):68−70. (袁慎铁, 赖朝彬, 陈英俊. EQ47钢的高温塑性及Mn、Cr对其高温塑性的影响[J]. 金属热处理, 2014,39(8):68−70. doi: 10.13251/j.issn.0254-6051.2014.08.017

    Yuan Shentie, Lai Chaobin, Chen Yingjun. Hot ductility of EQ47 Steel and influence of Mn and Cr on it[J]. Heat Treatment of Metals, 2014, 39(08): 68-70. doi: 10.13251/j.issn.0254-6051.2014.08.017
    [20]
    Mintz B, Yue S, Jonas J J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting[J]. International Materials Reviews, 1991,36(1):187−220. doi: 10.1179/imr.1991.36.1.187
    [21]
    Banks K, Koursaris A, Verdoorn F, et al. Precipitation and hot ductility of low CV and low CV-Nb microalloyed steels during thin slab casting[J]. Materials science and technology, 2001,17(12):1596−1604. doi: 10.1179/026708301101509665
    [22]
    Mao Xinping. Titanium microalloyed steel: fundamentals, technology, and products[M]. Berlin: Springer, 2019.
    [23]
    Cho Kyung Chul, Mun Dong Jun, Koo Yang Mo, et al. Effect of niobium and titanium addition on the hot ductility of boron containing steel[J]. Materials Science and Engineering:A, 2011,528(10-11):3556−3561. doi: 10.1016/j.msea.2011.01.097
    [24]
    Wang H, Liu W Y, Duan X P, et al. Research into hot ductility of high aluminium dual phase steel[J]. Ironmaking & Steelmaking, 2009,36(2):120−124.
    [25]
    Mejía Ignacio, Salas-Reyes Antonio Enrique, Bedolla-Jacuinde A, et al. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel[J]. Materials Science and Engineering: A, 2014,616:229−239. doi: 10.1016/j.msea.2014.08.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (76) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return