Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Wang Andong, Xiang Zhilei, Zhou Zongyi, Ma Xiaozhao, Han Jingyu, Chen Ziyong. Research status and prospect of high-strength β-titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007
Citation: Wang Andong, Xiang Zhilei, Zhou Zongyi, Ma Xiaozhao, Han Jingyu, Chen Ziyong. Research status and prospect of high-strength β-titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 46-57. doi: 10.7513/j.issn.1004-7638.2023.06.007

Research status and prospect of high-strength β-titanium alloy

doi: 10.7513/j.issn.1004-7638.2023.06.007
  • Received Date: 2023-03-14
    Available Online: 2024-01-11
  • Publish Date: 2023-12-30
  • For titanium alloys, the type and content of alloying elements have a great impact on the properties of the alloy. For β-titanium alloy, the main problem is how to select β-stable elements and control the addition of β-stable elements. In this paper, the influence of different alloyed elements on β-titanium alloy is reviewed, and the development process and current situation of high-strength β-titanium alloy at home and abroad are summarized. The American Ti-1023, β21-S, Russian BT22, Ti-5553 and Chinese Ti-5523 are mainly introduced. In addition, from the perspective of controlling the size, shape and type of the alloy phase by adding small size gap elements, the improvement of the strength of β-titanium alloy is prospected, in order to further improve the strength of β-titanium alloy. Finally, the difficulties encountered in the development of β-titanium alloy and the possible development direction of β-titanium alloy are summarized.
  • loading
  • [1]
    Li Yi, Zhao Yongqing, Zeng Weidong. Application and development of aerial titanium alloys[J]. Materials Reports, 2020,34(S1):280−282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280−282.

    Li Yi , Zhao Yongqing , Zeng Weidong . Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282.
    [2]
    Rrka B, Rkg C, As B, et al. Vacuum diffusion bonding of α titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics[J]. Materials Characterization, 2021,183:111607.
    [3]
    Nabhani F. Machining of aerospace titanium alloys[J]. Robotics & Computer Integrated Manufacturing, 2001,17(1-2):99−106.
    [4]
    Li L C, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy[J]. Journal of Alloys and Compounds, 2013,550:23−30. doi: 10.1016/j.jallcom.2012.09.140
    [5]
    Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys & Compounds, 2008,457(1-2):296−309.
    [6]
    Ivasishin O M, Markovsky R, Semiatin S L, et al. Aging response of coarse- and fine-grained β titanium alloys[J]. Materials Science & Engineering A, 2005,405(1/2):296−305.
    [7]
    Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010,20(S1):958−963. (王鼎春. 高强钛合金的发展与应用[J]. 中国有色金属学报, 2010,20(S1):958−963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206

    Wang Dingchun. Development and application of high-strength titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 958-963. doi: 10.19476/j.ysxb.1004.0609.2010.s1.206
    [8]
    Pallavi Pushp, Dasharath S M, Arati C. Classification and applications of titanium and its alloys - ScienceDirect[J]. Materials Today:Proceedings, 2022,54(2):537−542.
    [9]
    Zhang Pingping, Wang Qingjuan, Gao Qi, et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012,41(14):51−55. (张平平, 王庆娟, 高颀, 等. 高强β钛合金研究和应用现状[J]. 热加工工艺, 2012,41(14):51−55. doi: 10.3969/j.issn.1001-3814.2012.14.014

    Zhang Pingping , Wang Qingjuan , Gao Qin , et al. Research and application of high-strength β Ti alloy[J]. Hot Working Technology, 2012, 41(14): 51-55. doi: 10.3969/j.issn.1001-3814.2012.14.014
    [10]
    Dipankar, Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61:844−879. doi: 10.1016/j.actamat.2012.10.043
    [11]
    Bania P J. Beta titanium alloys and their role in the titanium industry[J]. Journal of the Minerals, Metals & Materials Society, 1994, 46: 16-19.
    [12]
    Min X, Emura S, Ling Z, et al. Improvement of strength–ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase[J]. Materials Science & Engineering A, 2015,646(14):279−287.
    [13]
    闫平. BT22高强度铸造钛合金组织与性能的研究[D]. 北京: 机械科学研究总院, 2007.

    Yan Ping . Study on microstructures and mechanical properties of high-strength BT22 cast titanium alloy[D]. Beijing: China Academy of Machinery Science and Technology Group, 2007.
    [14]
    Dipankar Banerjee, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61(3): 844-879.
    [15]
    张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009.

    Zhang Zhu, Wang Qunjiao, Mo Wei. Metallogy and heat treatmen of titanium[M]. Beijing: Metallurgical Industry Press, 2009.
    [16]
    赵永庆. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.

    Zhao Yongqing. Phase transformation and heat treatment of titanium alloys[M]. Changsha: Central South University Press, 2012 .
    [17]
    Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996,213(1-2):103−114. doi: 10.1016/0921-5093(96)10233-1
    [18]
    Fujishiro S , Eylon D , Kishi T . Metallurgy and technology of practical titanium alloys[M]. USA: TMS, 1994.
    [19]
    Wen Jianhong, Yang Guanjun, Ge Peng,et al. The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008,(1):33−39. (汶建宏, 杨冠军, 葛鹏, 等. β钛合金的研究进展[J]. 钛工业进展, 2008,(1):33−39. doi: 10.3969/j.issn.1009-9964.2008.01.008

    Wen Jianhong , Yang Guanjun , Ge Peng . The research progress of β titanium alloys[J]. Titanium Industry Progress, 2008(1): 33-39. doi: 10.3969/j.issn.1009-9964.2008.01.008
    [20]
    Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—an overview[J]. Materials Science & Engineering A, 1998,243(1-2):46−65.
    [21]
    Wang Guangrong, Gao Qi, Liu Jixiong, et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017,31(3):44−51. (王光荣, 高颀, 刘继雄, 等. β钛合金成分设计: 理论、方法、实践[J]. 材料导报, 2017,31(3):44−51.

    Wang Guangrong , Gao Qin , Liu Jiwei , et al. Composition design of beta-titanium alloys: Theoretical, methodological and practical advances[J]. Materials Reports, 2017, 31(3): 44-51.
    [22]
    杜赵新. 新型高强β钛合金的热处理和微合金化以及高温变形行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Du Zhaoxin . Heat treatment and microalloying and high temperature deformation behavior of new high strength titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014.
    [23]
    Cui Y J, Aoyagi K, Koizumi Y, et al. Effect of niobium addition on tensile properties and oxidation resistance of a titanium-based alloy[J]. Corrosion Science, 2020,180:109198.
    [24]
    Wu Huan, Zhao Yongqing, Ge Peng, et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012,41(5):805−810. (吴欢, 赵永庆, 葛鹏, 等. β稳定元素对钛合金α相强化行为的影响[J]. 稀有金属材料与工程, 2012,41(5):805−810. doi: 10.3969/j.issn.1002-185X.2012.05.012

    Wu Huan , Zhao Yongqing, Ge Peng , et al. Effect of β stabilizing elements on the strengthening behavior of titanium a phase[J]. Rare Metal Materials and Engineering, 2012, 41(5): 805-810 . doi: 10.3969/j.issn.1002-185X.2012.05.012
    [25]
    Zhao Y, Liu J, Zhou L. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005,34(4):531−538.
    [26]
    Wu Xiaodong, Yang Guanjun, Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008,(5):1−6. (吴晓东, 杨冠军, 葛鹏, 等. β钛合金及其固态相变的归纳[J]. 钛工业进展, 2008,(5):1−6. doi: 10.3969/j.issn.1009-9964.2008.05.001

    Wu Xiaodong, Yang Guanjun , Ge Peng, et al. Inductions of β titanium alloy and solid state phase transition[J]. Titanium Industry Progress, 2008(5): 1-6 . doi: 10.3969/j.issn.1009-9964.2008.05.001
    [27]
    Boyer, Rodney R. Design properties of a high-strength titanium alloy Ti-10V-2Fe-3Al[J]. JOM, 1980,32(3):61−65. doi: 10.1007/BF03354557
    [28]
    Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000,(3):218−223. (钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000,(3):218−223. doi: 10.3969/j.issn.0258-7076.2000.03.012

    Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000(3): 218-223. doi: 10.3969/j.issn.0258-7076.2000.03.012
    [29]
    Chen C C, Boyer R R. Practical considerations for manufacturing high-strength Ti-10V-2Fe-3A1 alloy forgings[J]. JOM, 1979,31(7):33−39. doi: 10.1007/BF03354533
    [30]
    Gerhard W, Boyer R R, Collings E W. Materials properties handbook: Titanium alloys[M]. USA: Materials Park, OH : ASM International, 1994.
    [31]
    Zhao Q Y, Sun Q Y, Xin S W, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process[J]. Materials Science and Engineering:A, 2022,845:143260. doi: 10.1016/j.msea.2022.143260
    [32]
    Sansoz F, Almesallmy M, Ghonem H. Ductility exhaustion mechanisms in thermally exposed thin sheets of a near-β titanium alloy[J]. Metallurgical & Materials Transactions A, 2004,35(10):3113−3127.
    [33]
    Boyer R R. Aerospace applications of beta titanium alloys[J]. JOM, 1994,46(7):20−23. doi: 10.1007/BF03220743
    [34]
    Qiu D, Zhang M, Kelly P, et al. Discovery of plate-shaped athermal ω phase forming pairs with α′ martensite in a Ti–5.26%Cr alloy[J]. Scripta Materialia, 2013,69(10):752−755. doi: 10.1016/j.scriptamat.2013.08.020
    [35]
    Zhao Hongxia, Yu Wenjun. Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010,(1):85−86, 90. (赵红霞, 虞文军. 航空用高强度BT22钛合金的研发和应用[J]. 航空制造技术, 2010,(1):85−86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017

    Zhao H X , Yu W J . Development and application of high strength titanium alloy BT22 in aviation industry[J]. Aeronautical Manufacturing Technology, 2010(1): 85-86, 90. doi: 10.3969/j.issn.1671-833X.2010.01.017
    [36]
    Jones N G, Dashwood R J, Dye D, et al. The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging[J]. Metallurgical and Materials Transactions A, 2009,40(8):1944−1954. doi: 10.1007/s11661-009-9866-5
    [37]
    李秀广. 热处理对高强β钛合金板材组织及性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Li Xiuguang. Effect of heat treatment on microstructure and mechanical properties of high strength β titanium alloy sheets[D]. Harbin: Harbin Institute of Technology, 2016 .
    [38]
    陈兆琦. 高强β钛合金高温变形行为及板材组织性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Chen Zhaoqi. High temperature deformation behavior and sheet microstructure and properties of high strength β titanium alloy[D]. Harbin: Harbin Institute of Technology, 2021.
    [39]
    Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy Ti–5Al–5V–5Mo–3Cr[J]. Materials and Design, 2015,66:596−610. doi: 10.1016/j.matdes.2014.04.015
    [40]
    None. The use of β titanium alloys in the aerospace industry[J]. Journal of Materials Engineering & Performance, 2013,22(10):2916−2920.
    [41]
    Cotton J D, Briggs R D, Boyer R R, et al. State of the art in beta titanium alloys for airframe applications[J]. JOM, 2015,67(6):1281−1303. doi: 10.1007/s11837-015-1442-4
    [42]
    杨建辉. 锻态β钛合金组织性能及热变形行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Yang Jianhui. Research on microstructure and microstructure properties and hot deformation behavior of wrought as-forged beta titanium alloy[D]. Harbin: Harbin Institute of Technology, 2016.
    [43]
    Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011,35(4):575−580. (杨冬雨, 付艳艳, 惠松骁, 等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011,35(4):575−580. doi: 10.3969/j.issn.0258-7076.2011.04.017

    Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Metals, 2011, 35(4): 575-580. doi: 10.3969/j.issn.0258-7076.2011.04.017
    [44]
    Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4):485−490. (刘睿, 惠松骁, 叶文君, 等. 热处理工艺对TB10钛合金动态断裂韧性的影响[J]. 稀有金属, 2010,34(4):485−490. doi: 10.3969/j.issn.0258-7076.2010.04.003

    Liu Rui , Hui Songxiao , Ye Wenjun , et al. Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy[J]. Chinese Journal of Rare Metals, 2010,34(4): 485-490. doi: 10.3969/j.issn.0258-7076.2010.04.003
    [45]
    Zhao Xiaolong, Wang Xiaoxiang, Wang Xin. Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015,(5):5−7. (赵小龙, 王小翔, 王新. 变型量和热处理对BTi-6554钛合金冷轧板材组织和性能的影响[J]. 南方金属, 2015,(5):5−7. doi: 10.3969/j.issn.1009-9700.2015.05.002

    Zhao X L , Wang X X, Wang X . Effect of deformation and heat treatment on micro-structures and mechanical properties of cold rolled BTi-6554 alloy sheets[J]. Southern Metals, 2015(5): 5-7 . doi: 10.3969/j.issn.1009-9700.2015.05.002
    [46]
    Conrad Hans. Effect of interstitial solutes on the strength and ductility of titanium[J]. Progress in Materials Science, 1981, 26(2-4):123-403.
    [47]
    Xin Ji, Satoshi Emura, Liu Tianwei, et al. Effect of oxygen addition on microstructures and mechanical properties of Ti-7.5Mo alloy[J]. Journal of Alloys & Compounds, 2018,737:221−229.
    [48]
    Min X H, Emura S, Tsuchiya K, et al. Transition of multi-deformation modes in Ti–10Mo alloy with oxygen addition[J]. Materials Science and Engineering A, 2014,590:88−96. doi: 10.1016/j.msea.2013.10.010
    [49]
    Min X, Bai P, Emura S, et al. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy[J]. Materials Science & Engineering A, 2016,684:534−541.
    [50]
    Lan Chunbo, Chen Feng , Chen Huijuan, et al. Influence of oxygen content on the microstructure and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn-xO alloys after aging treatment[J]. Journal of Materials Science & Technology, 2018,34(11):134−140.
    [51]
    Furuta T, Kuramoto S, Hwang J, et al. Mechanical properties and phase stability of Ti-Nb-Ta-Zr-O alloys[J]. Materials Transactions, 2007,48(5):1124−1130. doi: 10.2320/matertrans.48.1124
    [52]
    Duan H P, Xu H X, Su W H, et al. Effect of oxygen on the microstructure and mechanical properties of Ti-23Nb-0.7Ta-2Zr alloy[J]. International Journal of Minerals Metallurgy & Materials, 2012,19(12):6.
    [53]
    Niinomi Mitsuo,Nakai Masaaki, Hendrickson , et al. Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy[J]. Scripta Materialia, 2016,123:144−148. doi: 10.1016/j.scriptamat.2016.06.027
    [54]
    Pinotti V E, Plaine A H, Silva M, et al. Influence of oxygen addition and aging on the microstructure and mechanical properties of a β-Ti-29Nb–13Ta–4Mo alloy[J]. Materials Science and Engineering A, 2021,819(18):141500.
    [55]
    Chen X, Chen S, Jiang Y, et al. Minocycline reduces oxygen–glucose deprivation-induced PC12 cell cytotoxicity via matrix metalloproteinase-9, integrin β1 and phosphorylated Akt modulation[J]. Neurological Sciences, 2013,34(8):1391−1396. doi: 10.1007/s10072-012-1246-z
    [56]
    Hennig R G , Trinkle D R , Bouchet J , et al. Impurities block the α to ω martensitic transformation in titanium[J]. Nature Materials, 2005,4:129-133.
    [57]
    Furuhara T, Annaka S, Tomio Y, et al. Superelasticity in Ti–10V–2Fe–3Al alloys with nitrogen addition[J]. Materials Science & Engineering A, 2006,438:825−829.
    [58]
    Ramarolahy A, Philippe Castany, Frédéric Prima, et al. Microstructure and mechanical behavior of superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N biomedical alloys[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012,9(9):83−90.
    [59]
    Xiu S, Lei W, Niinomi M, et al. Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions[J]. Materials Science and Engineering A, 2014,619:112−118. doi: 10.1016/j.msea.2014.09.069
    [60]
    Blenkinsop P A, Jones I P. Effects of boron, carbon, and silicon additions on microstructure and properties of a Ti–15Mo based beta titanium alloy[J]. Materials Science & Technology, 2001,17(5):573−580.
    [61]
    Banoth R, Sarkar R, Bhattacharjee A, et al. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys[J]. Materials & Design, 2015,67:50−63.
    [62]
    Gao K W, Nakamura M. Microstructures and hydrogen embrittlement of Ti–49Al alloy[J]. Intermetallics, 2000,8(5):595−597.
    [63]
    Briant C L, Wang Z F, Chollocoop N. Hydrogen embrittlement of commercial purity titanium[J]. Corrosion Science, 2002,44(8):1875−1888.
    [64]
    Alvarez A M, Robertson I M, Birnbaum H K. Hydrogen embrittlement of a metastable β-titanium alloy[J]. Acta Materialia, 2004,52(14):4161−4175. doi: 10.1016/j.actamat.2004.05.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (288) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return