Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Fan Xinsheng, Du Yu, Guo Xingmin. Effect of particle size composition of iron ore fines on the suitable amount of bonding phase in sintering process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 117-125. doi: 10.7513/j.issn.1004-7638.2023.06.017
Citation: Fan Xinsheng, Du Yu, Guo Xingmin. Effect of particle size composition of iron ore fines on the suitable amount of bonding phase in sintering process[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 117-125. doi: 10.7513/j.issn.1004-7638.2023.06.017

Effect of particle size composition of iron ore fines on the suitable amount of bonding phase in sintering process

doi: 10.7513/j.issn.1004-7638.2023.06.017
  • Received Date: 2023-02-01
    Available Online: 2024-01-11
  • Publish Date: 2023-12-30
  • Calcium ferrite is main bonding phase in high-basicity sinter, its formation is closely related to the sinter quality, and the appropriate amount of bonding phase is also an important factor of energy saving and carbon reduction in the sintering process. In this work, mono-calcium ferrite (CF) as an initial bonding phase and pre-sintered hematite (Fe2O3) powder as iron ore fines were used to investigate the influence of particle size composition of iron ore fines on the appropriate amount of bonding phase in sintering process. The results show that the amount of bonding phase needed for obtaining the same compressive strength of sintered samples increases with the increase of iron ore fines size. At same particle size range of iron ore fines, the compressive strength increases first and then decreases with increase of CF addition, and its maximum value should be corresponding to the suitable amount of bonding phase. At different particle size range, the maximum compressive strength decreases with increase of iron ore fines size, simultaneous the suitable amount of bonding phase shiftes to the direction of increasing bonding phase amount. Besides, CF reacts with Fe2O3 to form a calcium rich-ferrate (Ca3.6Fe14.4O25.2) with the low melting point, increasing the amount of bonding phase in sintering process. The Ca3.6Fe14.4O25.2 formation as a new phase increases with the increase of CF addition and the decrease of iron ore fines size, which revealed the relationship of amount between actual bonding phase and initial one in sintering process.
  • loading
  • [1]
    龙红明. 铁矿粉烧结原理与工艺[M]. 北京: 冶金工业出版社, 2010: 5-9.

    Long Hongming. Sintering principle and technology of iron ore powder[M]. Beijing: Metallurgical Industry Press, 2010: 5-9.
    [2]
    范晓慧. 铁矿烧结优化配矿原理与技术[M]. 北京: 冶金工业出版社, 2013: 62-72.

    Fan Xiaohui. Principle and technology of optimized ore blending by sintering of iron ore[M]. Beijing: Metallurgical Industry Press, 2013: 62-72.
    [3]
    郭兴敏. 烧结过程铁酸钙生成及其矿物学[M]. 北京: 冶金工业出版社, 1999: 59-64.

    Guo Xingmin. Formation of calcium ferrite during sintering and its mineralogy[M]. Beijing: Metallurgical Industry Press, 1999: 59-64.
    [4]
    Mumme W G, Clout J M F, Gable R W. The crystal structure of SFCA-I, Ca3.18Fe3+14.66Al 1.34Fe2+0.82O28, a homologue of the aenigmatite structure type and new crystal structure refinements of ß-CFF, Ca2.99Fe3+14.30Fe2+0.55O25 and Mg-free SFCA, Ca2.45Fe3+9.04Al1.74Fe2+0.16Si0.6O20[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 1998,173(1):93−117.
    [5]
    Xin R F, Du Y, Guo X M. Effect of alumina on crystallization behavior of calcium ferrite in Fe2O3-CaO-SiO2-Al2O3 system[J]. Materials, 2022,15(15):5257. doi: 10.3390/ma15155257
    [6]
    Ding X, Guo X M. The formation process of silico ferrite of calcium (SFC) from binary calcium ferrite[J]. Metallurgical and Materials Transactions B, 2014,45(4):1221−1231. doi: 10.1007/s11663-014-0041-z
    [7]
    Liu Zhengjian, Wang Jiabao, Zhang Jianliang, et al. Status of energy consumption and prospect of consumption reduction technology in blast furnace[J]. Journal of Iron and Steel Research, 2022,14(1):1−14. (刘征建, 王家保, 张建良, 等. 高炉能耗现状及降耗技术展望[J]. 钢铁研究学报, 2022,14(1):1−14.

    Liu Zhengjian, WangJiabao, Zhang Jianliang, et al. Status of energy consumption and prospect of consumption reduction technology in blast furnace[J]. Journal of Iron and Steel Research, 2022, 14(1): 1-14.
    [8]
    Dong J J, Wang G, Gong Y G, et al. Effect of high alumina iron ore of gibbsite type on sintering performance[J]. Ironmaking & Steelmaking, 2014,42(1):34−40.
    [9]
    Peng J, Zhang L, Liu L X, et al. Relationship between liquid fluidity of iron ore and generated liquid content during sintering[J]. Metallurgical and Materials Transactions B, 2017,48(1):538−544. doi: 10.1007/s11663-016-0827-2
    [10]
    Lv X W, Bai C G, Deng Q Y, et al. Behavior of liquid phase formation during iron ores sintering[J]. ISIJ International, 2022,51(5):722−727.
    [11]
    Wu Shengli, Du Jianxin, Ma Hongbin, et al. Self-intensity of bonding phase in iron ores during sintering[J]. Journal of University of Science and Technology Beijing, 2005,27(4):69−72. (吴胜利, 杜建新, 马洪斌, 等. 铁矿粉烧结黏结相自身强度特性[J]. 北京科技大学学报, 2005,27(4):69−72.

    Wu Shengli, Du Jianxin, Ma Hongbin, et al. Self-intensity of bonding phase in iron ores during sintering[J]. Journal of University of Science and Technology Beijing, 2005, 27(4): 69-72.
    [12]
    Huang Zhucheng, Jiang Yuan, Mao Xiaoming, et al. Study on rational distribution of fuel in sintering iron ore[J]. Journal of Central South University: Natural Science Edition, 2006,(5):884−890. (黄柱成, 江源, 毛晓明, 等. 铁矿烧结中燃料合理分布研究[J]. 中南大学学报:自然科学版, 2006,(5):884−890.

    Huang Zhucheng, Jiang Yuan, Mao Xiaoming, et al. Study on rational distribution of fuel in sintering iron ore[J]. Journal of Central South University: Natural Science Edition, 2006(5): 884-890.
    [13]
    Liu Lina, Han Xiuli. A review on influence of sintering quality[J]. Journal of Hebei Institute of Technology, 2006,28(2):18−22. (刘丽娜, 韩秀丽. 影响烧结矿质量的因素[J]. 河北理工学院学报, 2006,28(2):18−22.

    Liu Lina, Han Xiuli. A review on influence of sintering quality[J]. Journal of Hebei Institute of Technology, 2006, 28(2): 18-22.
    [14]
    陈耀铭. 烧结球团矿微观结构[M]. 长沙: 中南大学出版社, 2011: 69.

    Chen Yaoming. Microstructure of sintered pellets[M]. Changsha: Central South University Press, 2011: 69.
    [15]
    张汉泉. 烧结球团理论与工艺[M]. 北京: 化学工业出版社, 2015: 70-75.

    Zhang Hanquan. Theory and technology of sintered pellets[M]. Beijing: Chemical Industrial Press, 2015: 70-75.
    [16]
    李光森. 黏结相对烧结矿强度的影响机理及其合理组分的探讨[D]. 沈阳: 东北大学, 2008: 4-6.

    Li Guangsen. Discussion on the influence mechanism of bonding on the strength of sinter and its reasonable components[D]. Shenyang: Northeastern University, 2008: 4-6.
    [17]
    Chen Hong, Zhang Meifang. Study on reactivity of iron ore powder[J]. Bao-Steel Technology, 2001,(5):35−38. (陈宏, 张美芳. 铁矿粉反应性研究[J]. 宝钢技术, 2001,(5):35−38.

    Chen Hong, Zhang Meifang. Study on reactivity of iron ore powder[J]. Bao-Steel Technology, 2001(5): 35-38.
    [18]
    Gao Feng. Production practice of high precision powder and low silicon sintering in TISCO[J]. Sintering and Pelletizing, 2004,29(6):38−41. (高峰. 太钢高精粉低硅烧结生产实践[J]. 烧结球团, 2004,29(6):38−41.

    Gao Feng. Production practice of high precision powder and low silicon sintering in TISCO[J]. Sintering and Pelletizing, 2004, 29(6): 38-41.
    [19]
    Hida Y, Okazaki J, Itoh K, et al. Formation mechanism of acicular calcium ferrite of iron ore sinter[J]. Tetsu-to-Hagane, 1987,73(15):1893−1900. doi: 10.2355/tetsutohagane1955.73.15_1893
    [20]
    Scarlett N V Y, Madsen I C, Pownceby M I, et al. In situ X-ray diffraction analysis of iron ore sinter phases[J]. Journal of Applied Crystallography, 2004,37(3):362−368. doi: 10.1107/S002188980400353X
    [21]
    Scarlett N V Y, Pownceby M I, Madsen I C, et al. Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter[J]. Metallurgical and Materials Transactions B, 2004,35B(5):929−936.
    [22]
    李光森, 金明芳, 姜鑫, 等. 烧结矿黏结相熔化特性的研究[C]//中国钢铁年会论文集. 北京: 冶金工业出版社, 2007.

    Li Guangsen, Jin Mingfang, Jiang Xin, et al. Research on melting characteristics of sinter bonding phase[C]// Proceedings of China Steel Annual Conference. Beijing: Metallurgical Industry Press, 2007.
    [23]
    Liu Ran, Liu Chaoqing, Lü Qing, et al. Study on liquid phase generation of vanadium-titanium sinter with moderate titanium content[J]. Iron Steel Vanadium Titanium, 2014,35(5):72−77. (刘然, 刘朝卿, 吕庆, 等. 中钛型钒钛烧结矿液相量的研究[J]. 钢铁钒钛, 2014,35(5):72−77.

    Liu Ran, Liu Chaoqing, Lv Qing, et al. Study on liquid phase generation of vanadium-titanium sinterwith moderate titanium content[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 72-77.
    [24]
    Cores A, Babich A, Muniz M, et al. The influence of different iron ores mixtures composition on the quality of sinter[J]. ISIJ International, 2010,50(8):1089−1098. doi: 10.2355/isijinternational.50.1089
    [25]
    Webster N A S, Pownceby M I, Madsen I C, et al. Effect of oxygen partial pressure on the formation mechanisms of complex Ca-rich ferrites[J]. ISIJ International, 2013,53(5):774−781. doi: 10.2355/isijinternational.53.774
    [26]
    Webster N A S, Churchill J G, Tufaile F, et al. Fundamentals of silico-ferrite of calcium and aluminium(SFCA) and SFCA-Ⅰ iron ore sinter bonding phase formation: effects of titanmagnetite-based ironsand and titanium addition[J]. ISIJ International, 2016,56(10):1715−1722. doi: 10.2355/isijinternational.ISIJINT-2016-162
    [27]
    Webster N A S, Pownceby M I, Pattel R. Fundamentals of silico-ferrite of calcium and aluminium(SFCA) and SFCA-Ⅰ iron ore sinter bonding phase formation: effects of mill scale addition[J]. Power Diffraction, 2017,32(S2):85−89. doi: 10.1017/S088571561700080X
    [28]
    Ding X, Guo X M, Ma C Y, et al. Effect of SiO2 on the crystal structure stability of SFC at 1473 K (1200 ℃)[J]. Metallurgical and Materials Transactions B, 2015,46(2):1147−1153.
    [29]
    Guo H, Guo X M. Effect of aluminum dissolved in hematite on formation of calcium ferrites at 1473 K[J]. Metallurgical and Materials Transactions B, 2018,49B:1974−1984.
    [30]
    Wang Ruying. The study on microhardness of sinter[J]. Sintering and Pelletizing, 1995,(3):9−13. (王如英. 烧结矿显微硬度的研究[J]. 烧结球团, 1995,(3):9−13.

    Wang Ruying. The study on microhardness of sinter[J]. Sintering and Pelletizing, 1995(3): 9-13.
    [31]
    Qiao Ruiqing, Du Hegui. Formation mechanism of micropores in low fluoride sinter and its influence on sinter strength[J]. Journal of Iron and Steel Research, 1999,11(6):1. (乔瑞庆, 杜鹤桂. 低氟烧结矿微气孔的形成机理及对烧结矿强度的影响[J]. 钢铁研究学报, 1999,11(6):1.

    Qiao Ruiqing, Du Hegui. Formation mechanism of micropores in low fluoride sinter and its influence on sinter strength[J]. Journal of Iron and Steel Research, 1999, 11(6): 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (68) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return