Volume 44 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
An Minrong, Yao Junfan, Chen Xuan, Wang Bo, Lü Jiangyi, Zhu Zhihao, Quan Kai, Li Teng. Study on size-dependence of tensile mechanical properties and plastic deformation mechanism in CoCrFeNiMn high entropy alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 179-185. doi: 10.7513/j.issn.1004-7638.2023.06.025
Citation: An Minrong, Yao Junfan, Chen Xuan, Wang Bo, Lü Jiangyi, Zhu Zhihao, Quan Kai, Li Teng. Study on size-dependence of tensile mechanical properties and plastic deformation mechanism in CoCrFeNiMn high entropy alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 179-185. doi: 10.7513/j.issn.1004-7638.2023.06.025

Study on size-dependence of tensile mechanical properties and plastic deformation mechanism in CoCrFeNiMn high entropy alloy

doi: 10.7513/j.issn.1004-7638.2023.06.025
  • Received Date: 2022-10-27
    Available Online: 2024-01-11
  • Publish Date: 2023-12-30
  • The mechanical properties of CoCrFeNiMn high entropy alloys (HEAs) with different cross section sizes were investigated by molecular dynamics simulation under tensile loading. Modified embedding atomic potential was employed to describe the interactions between Co, Cr, Fe, Ni and Mn atoms. The simulation results indicated that the tensile properties and deformation mechanism of CoCrFeNiMn HEAs depended on the cross section size. A critical value of peak stress occurred when the cross section size was 7.00 nm, which depended on the number of dislocation nucleation sites. With the increase of cross section size, the plastic deformation mechanism changed from the formation of amorphous structures to dislocation slip and transformation from FCC structure to HCP structure. The results of this study can provide a guidance for design and preparation of high entropy alloy with high performance.
  • loading
  • [1]
    Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004,6:299−303. doi: 10.1002/adem.200300567
    [2]
    George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019,4:515−534.
    [3]
    乔珺威. 面心立方结构高熵合金[M]. 北京: 冶金工业出版社, 2021.

    Qiao Junwei. High entropy alloy with face-centered cubic structure [M].Beijing: Metallurgical Industry Press, 2021.
    [4]
    王龙. 高熵合金涂层的微结构与耐腐蚀性能研究[D]. 自贡: 四川理工学院, 2015.

    Wang Long. Study on microstructure and corrosion resistance of high entropy alloy coatings[D]. Zigong: Sichuan University of Science and Technology, 2015.
    [5]
    鲁一荻, 张骁勇, 侯硕. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程, 2021, 50(1): 333-341.

    Lu Yidi, Zhang Xiaoyong, Hou Shuo, et al. Development and industrial application prospect of high entropy alloys[J]. Rare Metal Materials and Engineering, 2021, 50(1): 333-341.
    [6]
    张荣, 祁文军, 张爽. AlxCoCrFeNi拉伸力学性能的分子动力学模拟[J]. 钢铁钒钛, 2022, 43(6): 173-179.

    Zhang Rong, Qi Wenjun, Zhang Shuang. Molecular dynamics simulation of tensile mechanical properties of AlxCoCrFeNi[J], Iron Steel Vanadium Titanium, 2022,43(6):173-179.
    [7]
    Zhao Haichao, Qiao Yulin, Liang Xiubing, et al. Research progress and prospect of lightweight high entropy alloys[J]. Rare Metal Materials and Engineering, 2020,49(4):1457−1468. (赵海朝, 乔玉林, 梁秀兵, 等. 轻质高熵合金的研究进展与展望[J]. 稀有金属材料与工程, 2020,49(4):1457−1468.

    Zhao Haichao, Qiao Yulin, Liang Xiubing et al. Research progress and prospect of Lightweight High Entropy Alloys [J]. Rare Metal Materials and Engineering, 2020, 49(04): 1457-1468.
    [8]
    Csikor F F, Motz C, Weygand D, et al. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale[J]. Science, 2017,318:251−254.
    [9]
    Xie K, Sirestha S, Cao Y, et al. The effect of pre-existing defects on the strength and deformation behavior of a-Fe nanopillars[J]. Acta Materialia, 2013,61:439−452. doi: 10.1016/j.actamat.2012.09.022
    [10]
    Zhang J Y, Lei S Y, Liu Y, et al. Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars[J]. Acta Materialia, 2012,(60):1610−1622.
    [11]
    Zhang J Y, Liu G, Lei S Y, et al. Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: Intrinsic vs. extrinsic size effect[J]. Acta Materialia, 2012,(60):7183−7196.
    [12]
    Yu Zou, Soumyadipta Maiti, Walter Steurer, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropyalloy[J]. Acta Materialia, 2014,65:85−97. doi: 10.1016/j.actamat.2013.11.049
    [13]
    Indranil Basu, Vaclav Ocelík, Jeff Th M, et al. Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys[J]. Acta Materialia, 2018,150:104−116. doi: 10.1016/j.actamat.2018.03.015
    [14]
    An Minrong, Li Silan, Su Mengjia. Molecular dynamics simulation of size-dependent plastic deformation mechanism of CoCrFeNiMn crystal/amorphous biphase high entropy alloy[J]. Acta Physica Sinica, 2022,(24):146−157. (安敏荣, 李思澜, 宿梦嘉. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟研究[J]. 物理学报, 2022,(24):146−157. doi: 10.7498/aps.71.20221368

    An Minrong, Li Silan, Su Mengjia. Molecular dynamics simulation of size-dependent plastic deformation mechanism of CoCrFeNiMn crystal/amorphous biphase high entropy alloy. Acta Physica Sinica. doi: 10.7498/aps.71.20221368.
    [15]
    Xiao L L, Zheng Z Q, Guo S W, et al. Ultra-strong nanostructured CrMnFeCoNi high entropy alloys[J]. Materials and Design, 2020,194:108895. doi: 10.1016/j.matdes.2020.108895
    [16]
    Ji W, Wu M S. Nanoscale origin of the crystalline-to-amorphous phase transformation and damage tolerance of Cantor alloys at cryogenic temperatures[J]. Acta Materialia, 2022,226:117639. doi: 10.1016/j.actamat.2022.117639
    [17]
    Zhao S, Li Z, Zhu C, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy[J]. Science Advance, 2021,7:eabb3108.
    [18]
    Li J, Bai Z, Max Powers. et al. Deformation mechanisms in crystalline-amorphous high-entropy composite multilayers[J]. Materials Science & Engineering A, 2022, 848: 143144.
    [19]
    Ren J, Sun J, Xiao L, et al. Size-dependent of compression yield strength and deformation mechanism in titanium single-crystal nanopillars orientated [0001] and [11-20][J]. Materials Science & Engineering A, 2014,615:22−28.
    [20]
    Shuichi Nosé. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81: 511.
    [21]
    Won-Mi Choi, Yong Hee Jo, Seok Su Sohn, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study[J]. NPJ Computational Materials, 2018,4:1. doi: 10.1038/s41524-017-0060-9
    [22]
    Utt D, Lee S, Xing Y, et al. The origin of jerky dislocation motion in high-entropy alloys[J]. Nature Communications, 2022,13:4777. doi: 10.1038/s41467-022-32134-1
    [23]
    Hayakawa S, Xu H. Temperature-dependent mechanisms of dislocation-twin boundary interactions in Ni-based equiatomic alloys[J]. Acta Materialia, 2021,211:116886. doi: 10.1016/j.actamat.2021.116886
    [24]
    Plimpton S, Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics, 1995, 117: 1-19.
    [25]
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J].Modelling and Simulation in Materials Science and Engineering, 2009, 18: 015012.
    [26]
    Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science, 1994, 2: 279-286.
    [27]
    Li J, Chen H, Feng H, et al. Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites[J]. Journal of Materials Science & Technology, 2020,54:14−19.
    [28]
    Shen Tianzhan, Song Haiyang, An Minrong. Molecular dynamics simulation of the effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high entropy alloy[J]. Acta Physica Sinica, 2021,70(18):186201. (申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟[J]. 物理学报, 2021,70(18):186201. doi: 10.7498/aps.70.20210324

    Shen Tianzhan, Song Haiyang, An MinRong. Molecular dynamics simulation of the effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high entropy alloy[J]. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [29]
    Qi Y M, Zhao M, Feng M L. Molecular simulation of microstructure evolution and plastic deformation of nanocrystalline CoCrFeMnNi high-entropy alloy under tension and compression[J]. Journal of Alloys and Compounds, 2021,851:156923. doi: 10.1016/j.jallcom.2020.156923
    [30]
    Fang Q H, Chen Y, Li J, et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys[J]. International Journal of Plasticity, 2019,114:161−173. doi: 10.1016/j.ijplas.2018.10.014
    [31]
    Chowdhury P, Canadinc D, Sehitoglu H. On deformation behavior of Fe-Mn based structural alloys[J]. Materials Science and Engineering R, 2017, 122: 1-28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (51) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return