Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Li Mengzhen, Li Baokuan, Yu Yang, Xiao Jun. Comparative study on arc characteristics of hollow and solid electrode electric furnace melting titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 19-27. doi: 10.7513/j.issn.1004-7638.2024.01.004
Citation: Li Mengzhen, Li Baokuan, Yu Yang, Xiao Jun. Comparative study on arc characteristics of hollow and solid electrode electric furnace melting titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 19-27. doi: 10.7513/j.issn.1004-7638.2024.01.004

Comparative study on arc characteristics of hollow and solid electrode electric furnace melting titanium slag

doi: 10.7513/j.issn.1004-7638.2024.01.004
  • Received Date: 2023-09-05
  • Publish Date: 2024-02-01
  • In order to further explore the advantages of hollow electrode technology in titanium slag electric furnace smelting process, based on the actual electrode size of 25.5 MW titanium slag electric furnace, the mathematical models of hollow and solid electrode arc were established, and the distribution characteristics of electromagnetic field, temperature field and flow field of hollow and solid electrode arc were simulated. The effects of current magnitude and arc length on the surface temperature distribution of molten pool were studied. The results show that the larger values of current density, joule heating value, velocity, and temperature in the arc are located near the cathode spot. In the situation of hollow electrode, the area is below the centerline of the inner and outer diameters. And in the situation of solid electrode, the area is near the central axis. When using hollow electrode, the surrounding arc will converge towards the central axis, which is beneficial for improving the efficiency of arc heating materials. When the current value increases from 34 kA to 54 kA, the average surface temperature of the molten pool in both cases increases by 708 K and 109 K, respectively. When the arc length was reduced from 0.3 m to 0.1 m, the average surface temperature of the molten pool in both cases increased by 2500 K and 46 K, respectively. Compared to solid electrode, the hollow electrode is more suitable for using the operation mode of high current and short arc length, and the reasonable control of arc length has a more significant effect on improving the heating efficiency of hollow electrode arc.
  • loading
  • [1]
    杨绍利, 盛继孚. 钛铁矿熔炼钛渣与生铁技术[M]. 北京: 冶金工业出版社, 2006.

    Yang Shaoli, Sheng Jifu. Titanium slag and pig iron smelting technology of ilmenite[M]. Beijing: Metallurgical Industry Press, 2006.
    [2]
    Yu Jiahua, Liu Honggui. The current status and development trend of titanium ore and titanium rich materials production at home and abroad[J]. World Nonferrous Metals, 2003,(6):4−8. (余家华, 刘洪贵. 国内外钛矿和富钛料生产现状及发展趋势[J]. 世界有色金属, 2003,(6):4−8.

    Yu Jiahua, Liu Honggui. The current status and development trend of titanium ore and titanium rich materials production at home and abroad[J]. World Nonferrous Metals, 2003(6): 4-8.
    [3]
    Sheng Jifu. Analysis of some characteristics of titanium slag melted in DC hollow electrode electric furnace[J]. Titanium Industry Progress, 2003,21(1):27−32. (盛继孚. 直流—空心电极电炉熔炼钛渣的某些特性浅析[J]. 钛工业进展, 2003,21(1):27−32. doi: 10.3969/j.issn.1009-9964.2003.01.006

    Sheng Jifu. Analysis of some characteristics of titanium slag melted in DC hollow electrode electric furnace[J]. Titanium Industry Progress, 2003, 21(1): 27-32. doi: 10.3969/j.issn.1009-9964.2003.01.006
    [4]
    Mckelliget J W, Szekely J. A mathematical model of the cathode region of a high intensity carbon arc[J]. Journal of Physics D:Applied Physics, 1983,16:1007−1022. doi: 10.1088/0022-3727/16/6/010
    [5]
    Hsu K S, Etemadi K, Pfender E. Study of the free‐burning high‐intensity argon arc[J]. Journal of Applied Physics, 1983,54(3):1293−1301. doi: 10.1063/1.332195
    [6]
    Qian F, Farouk B, Mutharasan R. Modeling of fluid flow and heat transfer in the plasma region of the dc electric arc furnace[J]. Metallurgical & Materials Transactions B, 1995,26(5):1057−1067.
    [7]
    Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A[J]. Journal of Physics D Applied Physics, 1972,5(8):1422−1432. doi: 10.1088/0022-3727/5/8/309
    [8]
    Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes[J]. Journal of Physics D:Applied Physics, 1997,30:2033−2042. doi: 10.1088/0022-3727/30/14/011
    [9]
    Ramírez M, Alexis J, Trapaga G, et al. Modeling of a DC electric arc furnace—mixing in the bath[J]. ISIJ International, 2001,41(10):1146−1155. doi: 10.2355/isijinternational.41.1146
    [10]
    Li Heping, Chen Xi. Numerical simulation of heat transfer and flow in a free burning arc[J]. Journal of Engineering Thermophysics, 2001,22(1):78−81. (李和平, 陈熙. 自由燃烧电弧中传热与流动的数值模拟[J]. 工程热物理学报, 2001,22(1):78−81. doi: 10.3321/j.issn:0253-231X.2001.01.022

    Li Heping, Chen Xi. Numerical simulation of heat transfer and flow in a free burning arc[J]. Journal of Engineering Thermophysics, 2001, 22(1): 78-81. doi: 10.3321/j.issn:0253-231X.2001.01.022
    [11]
    王丰华. 电弧炉建模研究及其应用[D]. 上海: 上海交通大学, 2006.

    Wang Fenghua. Research and application of electric arc furnace modeling[D]. Shanghai: Shanghai Jiaotong University, 2006.
    [12]
    刘立超. 耦合熔池的直流电弧物理特性数值研究[D]. 沈阳: 东北大学, 2016.

    Liu Lichao. Numerical study on physical characteristics of DC arc in coupled molten pool[D]. Shenyang: Northeast University, 2016.
    [13]
    Reynolds Q G. Influence of the power supply on the behaviour of DC plasma arcs - a modelling study[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018,118:655−660.
    [14]
    Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in electric arc furnace[J]. Journal of Engineering Science, 2020,42(S1):60−67. (姚聪林, 朱红春, 姜周华, 等. 电弧炉内长电弧等离子体的数值模拟[J]. 工程科学学报, 2020,42(S1):60−67.

    Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in electric arc furnace[J]. Journal of Engineering Science, 2020, 42(S1): 60-67.
    [15]
    Makgoale T, Bogaers A, Zietsman J, et al. Momentum transfer from arc to slag bath in a DC ilmenite smelting furnace: A computational analysis[J]. JOM, 2021,73(9):2682−2697. doi: 10.1007/s11837-021-04792-x
    [16]
    Chen Y C, Ryan S, Silaen A K, et al. Numerical investigation of AC electric arc plasma heat dissipation in EAF[J]. Ironmaking & Steelmaking, 2022,49(3):255−267.
    [17]
    Huang P C, Pfender E. Study of a transferred-arc plasma reactor with a converging wall and flow through a hollow cathode[J]. Plasma Chemistry and Plasma Processing, 1991,11(1):129−150. doi: 10.1007/BF01447037
    [18]
    Tashiro C S, Tanaka M, Nakatani M, et al. Numerical analysis of energy source properties of hollow cathode arc[J]. Surface & Coatings Technology, 2007,201:5431−5434.
    [19]
    Chen Shujun, Sheng Shan, Jiang Fan, et al. Physical properties of negative pressure arc at the center of hollow tungsten electrode[J]. Journal of Welding, 2017,38(12):1−4. (陈树君, 盛珊, 蒋凡, 等. 空心钨极中心负压电弧的物理性能[J]. 焊接学报, 2017,38(12):1−4. doi: 10.12073/j.hjxb.20171230

    Chen Shujun, Sheng Shan, Jiang Fan, et al. Physical properties of negative pressure arc at the center of hollow tungsten electrode[J]. Journal of Welding, 2017, 38(12): 1-4. doi: 10.12073/j.hjxb.20171230
    [20]
    Angola A D, Colonna G, Gorse C, et al. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range[J]. The European Physical Journal D, 2008,46(1):129−150. doi: 10.1140/epjd/e2007-00305-4
    [21]
    Rao Z H, Liao S M, Tsai H L. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding[J]. Journal of Applied Physics, 2010,107(4):044902. doi: 10.1063/1.3291121
    [22]
    Naghizadeh-Kashani Y, Cressault Y, Gleizes A. Net emission coefficient of air thermal plasmas[J]. Journal of Physics D:Applied Physics, 2002,35(22):2925−2934. doi: 10.1088/0022-3727/35/22/306
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (23) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return