Volume 45 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Qiao Jialong, Guo Feihu, Shi Pengzhao, Cao Ruihong, Xiong Chenguang, Xu Lijun. Precipitation behavior of composite precipitates in Nb-Ti micro-alloy EH36 offshore steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 122-130. doi: 10.7513/j.issn.1004-7638.2024.01.018
Citation: Qiao Jialong, Guo Feihu, Shi Pengzhao, Cao Ruihong, Xiong Chenguang, Xu Lijun. Precipitation behavior of composite precipitates in Nb-Ti micro-alloy EH36 offshore steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 122-130. doi: 10.7513/j.issn.1004-7638.2024.01.018

Precipitation behavior of composite precipitates in Nb-Ti micro-alloy EH36 offshore steel

doi: 10.7513/j.issn.1004-7638.2024.01.018
  • Received Date: 2023-06-26
  • Publish Date: 2024-02-29
  • Based on the principal component regression analysis of the factors affecting the yield strength of EH36 offshore steel, combined with the solid solution precipitation calculation of composite precipitation phase and the classical precipitation kinetics theory, the main factors affecting the yield strength of EH36 offshore steel and the precipitation behavior of composite precipitation phase in γ were systematically studied, and the influence of austenite deformation and energy storage during rolling on the precipitation kinetics of composite precipitation phase was discussed. The results show that the main factors affecting the yield strength of EH36 offshore steel are Ti, Nb and N. MN and M(C,N) began to precipitate at 1728.5 K and 1430.0 K, respectively, and were mainly (Ti,Nb)N and (Nb,Ti)C. In the austenite phase region, the maximum precipitation amounts of MN and M(C,N) are 0.0165% and 0.0277% respectively, and the maximum precipitation volume fractions are 0.000228% and 0.000389% respectively. The fastest precipitation temperatures for grain boundary nucleation are 1580.3 K and 1228.3 K respectively. With the increase of deformation energy storage, the relative nucleation rate of MN and M(C,N) increases, the incubation period of precipitation is obviously shortened and the precipitation strengthening effect is enhanced.
  • loading
  • [1]
    Zhao Mengjing, Wang Feng, Xi Xiaojun, et al. Effect of Y on inclusions characteristics and tensile properties in EH36 shipbuilding steel[J]. Iron & Steel, 2019,54(7):67−73. (赵梦静, 王峰, 习小军, 等. 钇对EH36船板钢夹杂物特性和拉伸性能的影响[J]. 钢铁, 2019,54(7):67−73.

    Zhao Mengjing, Wang Feng, Xi Xiaojun, et al. Effect of Y on inclusions characteristics and tensile properties in EH36 shipbuilding steel[J]. Iron & Steel, 2019, 54(7): 67-73.
    [2]
    Zhou Yutao, Yang Shufeng, Li Jingshe, et al. Inclusions evolution of high-grade ship plate steel in practical production processes[J]. Iron & Steel, 2019,54(1):33−42. (周宇涛, 杨树峰, 李京社, 等. 高级别船板钢生产过程中夹杂物的演变规律[J]. 钢铁, 2019,54(1):33−42.

    Zhou Yutao, Yang Shufeng, Li Jingshe, et al. Inclusions evolution of high-grade ship plate steel in practical production processes[J]. Iron & Steel, 2019, 54(1): 33-42.
    [3]
    Wang Hongtao, Tian Yong, Ye Qibin, et al. Development of heavy ship plate in extremely cold environment[J]. Steel Rolling, 2018,35(5):48−53. (王红涛, 田勇, 叶其斌, 等. 极寒环境下厚规格船舶用钢的发展[J]. 轧钢, 2018,35(5):48−53.

    Wang Hongtao, Tian Yong, Ye Qibin, et al. Development of heavy ship plate in extremely cold environment[J]. Steel Rolling, 2018, 35(5): 48-53.
    [4]
    Yang Kaisheng. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017,10:34−39. (阳开生. 热处理及NbV-N微合金化对船板钢组织性能的影响[J]. 中国冶金, 2017,10:34−39.

    Yang Kaisheng. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 10: 34-39.
    [5]
    Shu Wei, Wang Xuemin, Li Shurui, et al. Influence of second-phase particles containing Ti on microstructure and properties of weld-heat-affected-zone of a microalloyed steel[J]. Acta Metallurgica Sinica, 2010,8:997−1003. (舒玮, 王学敏, 李书瑞, 等. 含Ti复合第二相粒子对微合金钢焊接热影响区组织和性能的影响[J]. 金属学报, 2010,8:997−1003.

    Shu Wei, Wang Xuemin, Li Shurui, et al. Influence of second-phase particles containing Ti on microstructure and properties of weld-heat-affected-zone of a microalloyed steel[J]. Acta Metallurgica Sinica, 2010, 8: 997-1003.
    [6]
    Wu Shaowen, Zhang Caijun, Zheng Feifan, et al. Effect of second phase particles on austenite grain size in EH40 steel[J]. Heat Treatment of Metals, 2019,42(7):88−92. (武绍文, 张彩军, 郑非凡, 等. EH40钢中第二相粒子对奥氏体尺寸的影响[J]. 金属热处理, 2019,42(7):88−92.

    Wu Shaowen, Zhang Caijun, Zheng Feifan, et al. Effect of second phase particles on austenite grain size in EH40 steel[J]. Heat Treatment of Metals, 2019, 42(7): 88-92.
    [7]
    Liu Jiahe, Wang Zubin. Recent development on manufacturing technology of HSLA steel[J]. Iron & Steel, 1996,31(10):73−79. (刘嘉禾, 王祖滨. 低合金高强度钢生产工艺技术的发展[J]. 钢铁, 1996,31(10):73−79.

    Liu Jiahe, Wang Zubin. Recent development on manufacturing technology of HSLA steel[J]. Iron & Steel, 1996, 31(10): 73-79.
    [8]
    Shi Xiao, Wu Jianzhong, Guo Hanjie, et al. Precipitation behaviors of carbides and carbonitrides in DH36 high-strength ship plate steel[J]. Journal of Central South University (Science and Technology), 2018,283(3):14−24. (石骁, 吴建中, 郭汉杰, 等. DH36高强度船板钢中碳化物及碳氮化物析出行为[J]. 中南大学学报(自然科学版), 2018,283(3):14−24.

    Shi Xiao, Wu Jianzhong, Guo Hanjie, et al. Precipitation behaviors of carbides and carbonitrides in DH36 high-strength ship plate steel[J]. Journal of Central South University (Science and Technology), 2018, 283(3): 14-24.
    [9]
    Vanovsek W, Bernhard C, Fiedler M, et al. Effect of titanium on the solidification and postsolidification microstructure of high-strength steel welds[J]. Welding in the World, 2013,57(5):665−674. doi: 10.1007/s40194-013-0063-1
    [10]
    Zou Xiaodong, Zhao Dapeng, Sun Jincheng, et al. An integrated study on the evolution of inclusions in EH36 shipbuilding steel with Mg addition: From casting to welding[J]. Metallurgical and Materials Transactions, B, 2018,49(2):481−489. doi: 10.1007/s11663-017-1163-x
    [11]
    Wang Bingxing, Wu Zhongzi, Lou Haonan, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel[J]. Journal of Iron and Steel Research, 2019,31(2):154−161. (王丙兴, 武仲子, 娄号南, 等. 氧化物冶金工艺对EH36钢HAZ组织性能的影响[J]. 钢铁研究学报, 2019,31(2):154−161.

    Wang Bingxing, Wu Zhongzi, Lou Haonan, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel[J]. Journal of Iron and Steel Research, 2019, 31(2): 154-161.
    [12]
    Shi Minghao, Duan Zhengtao, Zhang Pengyan, et al. Effect of inclusions on formation of acicular ferrite in Ti and Zr micro-alloying steel[J]. Journal of Northeastern University(Natural Science), 2012,10:1424−1427. (石明浩, 段争涛, 张朋彦, 等. 夹杂物对Ti, Zr微合金钢中针状铁素体形成的影响[J]. 东北大学学报(自然科学版), 2012,10:1424−1427.

    Shi Minghao, Duan Zhengtao, Zhang Pengyan, et al. Effect of inclusions on formation of acicular ferrite in Ti and Zr micro-alloying steel[J]. Journal of Northeastern University(Natural Science), 2012, 10: 1424-1427.
    [13]
    Wang Baoming, Zhao Zhiyi, Chen Lingfeng, et al. Principal component regression analysis on the size and quantity of inclusions affecting magnetic properties of non-oriented silicon steel[J]. Metallurgical Analysis, 2014,34(10):1−6. (王宝明, 赵志毅, 陈凌峰, 等. 夹杂物尺寸及数量对无取向硅钢磁性能影响的主成分回归分析[J]. 冶金分析, 2014,34(10):1−6.

    Wang Baoming, Zhao Zhiyi, Chen Lingfeng, et al. Principal component regression analysis on the size and quantity of inclusions affecting magnetic properties of non-oriented silicon steel [J]. Metallurgical Analysis, 2014, 34(10): 1-6.
    [14]
    Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis for effects of grain size on magnetic properties of non-oriented silicon steel[J]. Transactions of Materials and Heat Treatment, 2014,35(11):215−218. (陈凌峰, 赵志毅, 王宝明, 等. 晶粒尺寸对无取向硅钢磁性能影响的主成分回归分析[J]. 材料热处理学报, 2014,35(11):215−218.

    Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis for effects of grain size on magnetic properties of non-oriented silicon steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(11): 215-218.
    [15]
    Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis on texture affecting magnetic properties of non-oriented silicon steel[J]. Hot Working Technology, 2015,44(16):62−64, 67. (陈凌峰, 赵志毅, 王宝明, 等. 织构对无取向硅钢磁性能影响的主成分回归分析[J]. 热加工工艺, 2015,44(16):62−64, 67.

    Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis on texture affecting magnetic properties of non-oriented silicon steel[J]. Hot Working Technology, 2015, 44(16): 62-64, 67.
    [16]
    雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.

    Yong Qilong. Secondary phases in steel [M]. Beijing: Metallurgical Industry Press, 2006.
    [17]
    Adrian H. Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium[J]. Materials Science and Technology, 1992,8(5):406−420. doi: 10.1179/mst.1992.8.5.406
    [18]
    Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica, 2018,54(8):38−46. (张可, 孙新军, 张明亚, 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学[J]. 金属学报, 2018,54(8):38−46.

    Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica, 2018, 54(8): 38-46.
    [19]
    Liu Min, Feng Xiaoming, Lai Chaobin, et al. Influence of hot rolling parameters on recrystallization of steel E690 for sea platform[J]. Heat Treatment of Metals, 2015,40(10):64−67. (刘敏, 冯小明, 赖朝彬, 等. 热轧工艺对海洋平台用钢E690再结晶的影响[J]. 金属热处理, 2015,40(10):64−67.

    Liu Min, Feng Xiaoming, Lai Chaobin, et al. Influence of hot rolling parameters on recrystallization of steel E690 for sea platform[J]. Heat Treatment of Metals, 2015, 40(10): 64-67.
    [20]
    Yao Na, Xing Chao. Precipitation kinetics of composite carbides of Nb-Ti-V-Mo microalloyed steel[J]. Iron Steel Vanadium Titanium, 2022,43(4):142−149. (姚娜, 兴超. Nb-Ti-V-Mo微合金钢中复合碳化物的析出动力学[J]. 钢铁钒钛, 2022,43(4):142−149.

    Yao Na, Xing Chao. Precipitation kinetics of composite carbides of Nb-Ti-V-Mo microalloyed steel[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 142-149.
    [21]
    Wang Zhaodong, Qu Jinbo, Liu Xianghua, et al. Investigation of strain-induced precipitation behavior in microalloying steel by stress relaxation method[J]. Acta Metallurgica Sinica, 2000,36(6):618−621. (王昭东, 曲锦波, 刘相华, 等. 松弛法研究微合金钢碳氮化物的应变诱导析出行为[J]. 金属学报, 2000,36(6):618−621.

    Wang Zhaodong, Qu Jinbo, Liu Xianghua, et al. Investigation of strain-induced precipitation behavior in microalloying steel by stress relaxation method[J]. Acta Metallurgica Sinica, 2000, 36(6): 618-621.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(9)

    Article Metrics

    Article views (23) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return