留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波强化钒钛磁铁矿直接还原过程研究

赵涛 余少武 温靖 邹志雪 李林 姜涛

赵涛, 余少武, 温靖, 邹志雪, 李林, 姜涛. 微波强化钒钛磁铁矿直接还原过程研究[J]. 钢铁钒钛, 2021, 42(4): 105-110. doi: 10.7513/j.issn.1004-7638.2021.04.018
引用本文: 赵涛, 余少武, 温靖, 邹志雪, 李林, 姜涛. 微波强化钒钛磁铁矿直接还原过程研究[J]. 钢铁钒钛, 2021, 42(4): 105-110. doi: 10.7513/j.issn.1004-7638.2021.04.018
Zhao Tao, Yu Shaowu, Wen Jing, Zou Zhixue, Li Lin, Jiang Tao. Research on microwave enhanced direct reduction of vanadium titano-magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 105-110. doi: 10.7513/j.issn.1004-7638.2021.04.018
Citation: Zhao Tao, Yu Shaowu, Wen Jing, Zou Zhixue, Li Lin, Jiang Tao. Research on microwave enhanced direct reduction of vanadium titano-magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 105-110. doi: 10.7513/j.issn.1004-7638.2021.04.018

微波强化钒钛磁铁矿直接还原过程研究

doi: 10.7513/j.issn.1004-7638.2021.04.018
基金项目: 国家自然科学基金资助项目(51174051, 51090383)
详细信息
    作者简介:

    赵涛(1996−),男,硕士研究生,E-mail:1901642@stu.neu.edu.cn;

    通讯作者:

    姜涛(1973−),男,教授,博士生导师,主要从事钢铁冶金基础研究工作,E-mail:jiangt@smm.neu.edu.cn

  • 中图分类号: TF55

Research on microwave enhanced direct reduction of vanadium titano-magnetite

  • 摘要: 以钒钛磁铁精矿为原料,直接还原工艺为基础,系统比较了不同加热方式对还原过程的影响。结果表明:与传统加热相比,微波加热能加快钒钛磁铁矿还原反应的进行,并且随温度升高效果越显著,在1350℃时铁金属化率可达到91.91%,提高了5.32个百分点;微波加热不会改变还原产物的物相组成,但使还原产物结构致密,气孔减少,晶粒粗大且分布均匀,脉石与金属铁嵌布紧密程度降低,相互之间夹杂的现象减少,有利于后续磨矿磁选过程中金属铁与脉石相的分离;另外,微波加热可以明显去除还原产物中P元素,而对于S元素的去除效果不显著,在1350℃时传统加热获得的产物中P含量为0.077%,S含量为0.29%,微波加热获得的产物中P含量为0.038%,S含量为0.28%。
  • 图  1  钒钛磁铁矿精矿XRD图谱

    Figure  1.  XRD pattern of the vanadium titano-magnetite ore

    图  2  微波还原的还原产物宏观形貌

    Figure  2.  Macro-morphology of reduction products in microwave reduction

    图  3  不同加热方式下1300 ℃还原30 min的还原产物XRD图谱

    Figure  3.  XRD patterns of reduction products reduced at 1 300 ℃ for 30 min under different heating methods

    图  4  不同加热方式的还原产物的SEM照片

    Figure  4.  SEM images of reduction products under different heating methods

    图  5  加热方式对金属化率的影响

    Figure  5.  Effect of heating method on metallization rate

    表  1  钒钛磁铁精矿的主要化学成分

    Table  1.   Main chemical components of vanadium titano-magnetite ore concentrate %

    TFeFeOTiO2SiO2Al2O3MgOCaOV2O5PS
    58.6127.637.013.23.01.350.920.2910.0280.19
    下载: 导出CSV

    表  2  无烟煤的工业分析

    Table  2.   Industry analysis results of anthracite

    固定碳/
    %
    挥发份/
    %
    灰分/
    %
    S/
    %
    弹筒发热量/
    (MJ·kg−1)
    82.499.208.780.3028.35
    下载: 导出CSV

    表  3  不同加热方式还原产物的S、P含量

    Table  3.   S and P contents of reduction products under different heating methods

    温度/℃w(S)/%w(P)/%
    传统加热微波加热传统加热微波加热
    11000.240.310.100.027
    11500.240.320.110.035
    12000.280.350.0950.041
    12500.320.300.0810.024
    13000.320.290.0900.032
    13500.290.280.0770.038
    下载: 导出CSV
  • [1] (杜鹤桂. 高炉冶炼钒钛磁铁矿原理[M]. 北京: 科学出版社, 1996: 1−16.)

    Du Hegui. Principle of smelting vanadium titanium magnetite in blast furnace[M]. Beijing: Science Press, 1996: 1−16.
    [2] (王喜庆. 钒钛磁铁矿高炉冶炼[M]. 北京: 冶金工业出版社, 1994: 1−18.)

    Wang Xiqing. Blast furnace smelting of vanadium titanium magnetite[M]. Beijing: Metallurgical Industry Press, 1994: 1−18.
    [3] Tan Qiyou, Chen Bo, Zhang Yushu, et al. Resource characteristics and comprehensive recycling status of vanadium titanium magnetite in Panxi area[J]. Comprehensive Utilization of Mineral Resources, 2011,(6):6−9. (谭其尤, 陈 波, 张裕书, 等. 攀西地区钒钛磁铁矿资源特点与综合回收利用现状[J]. 矿产综合利用, 2011,(6):6−9. doi: 10.3969/j.issn.1000-6532.2011.06.002
    [4] Liang Diande. Discussion on the application of direct reduction technology in separation and extraction of vanadium from vanadium titanium magnetite[J]. Chongqing Iron and Steel Technology, 2002,45(3):1−6. (梁典德. 直接还原技术在钒钛磁铁矿铁钛分离和提钒工艺中的利用探讨[J]. 重钢技术, 2002,45(3):1−6.
    [5] Liu Gongguo. Experimental study on comprehensive utilization of vanadium titanium magnetite based on rotary hearth furnace direct reduction process[J]. Iron and Steel Research, 2012,40(2):4−7. (刘功国. 基于转底炉直接还原工艺的钒钛磁铁矿综合利用试验研究[J]. 钢铁研究, 2012,40(2):4−7.
    [6] Zhang Dajiang, Chen Dengfu, Xu Chushao, et al. Study on direct reduction process of coal based rotary kiln for low grade iron ore[J]. Acta Sinica Sinica, 2009,(S1):152−156. (张大江, 陈登福, 徐楚韶, 等. 低品位铁矿石煤基回转窑直接还原研究过程[J]. 工程学报, 2009,(S1):152−156.
    [7] Li Zhanjun, Liu Gongguo, Qin Jie, et al. Causes and countermeasures of bottom rise in direct reduction of vanadium titanium ore with rotary hearth furnace[J]. Metallurgy of China, 2015,(7):40−45. (李占军, 刘功国, 秦 洁, 等. 钒钛矿转底炉直接还原炉底上涨成因及对策[J]. 中国冶金, 2015,(7):40−45.
    [8] Zheng Peng. Experimental study on reduction smelting of vanadium titanium magnetite[J]. Nonferrous Mining and Metallurgy, 2017,33(4):35−37, 17. (郑 鹏. 钒钛磁铁矿还原熔炼试验研究[J]. 有色矿冶, 2017,33(4):35−37, 17.
    [9] Zhang Wenpu. Research and development progress of microwave heating technology in metallurgical industry[J]. China Molybdenum Industry, 2007,31(6):20−23. (张文朴. 微波加热技术在冶金工业中的应用研发进展[J]. 中国钼业, 2007,31(6):20−23. doi: 10.3969/j.issn.1006-2602.2007.06.004
    [10] Wu Wenhua, Tang Huiqing, Huang Wudi. Microwave drying and roasting pellets[J]. Journal of Beijing University of Science and Technology, 1994,16(2):118−122. (武文华, 唐惠庆, 黄务涤. 微波干燥和焙烧球团矿[J]. 北京科技大学学报, 1994,16(2):118−122.
    [11] Wang Junpeng, Jiang Tao, Liu Yajing, et al. Microwave assisted grinding experiment of vanadium titanium magnetite[J]. Journal of Northeast University (Natural Science Edition), 2017,38(11):1559−1563. (王俊鹏, 姜 涛, 刘亚静, 等. 钒钛磁铁矿微波助磨试验[J]. 东北大学学报(自然科学版), 2017,38(11):1559−1563. doi: 10.12068/j.issn.1005-3026.2017.11.009
    [12] Duan Dongping, Wan Tianji, Guo Zhancheng. Transformation behavior of sulfur in carbon containing pellets[J]. Acta Iron and Steel Research, 2005,17(5):16−21. (段东平, 万天骥, 郭占成. 硫在含碳球团内的转化行为[J]. 钢铁研究学报, 2005,17(5):16−21.
    [13] Zhang Hui, Jin Yonglong, He Zhijun. Study on extraction and dephosphorization of high phosphorus iron ore by microwave[J]. Gansu Metallurgy, 2011,33(1):1−3. (张辉, 金永龙, 何志军. 微波作用高磷铁矿提铁脱磷的研究[J]. 甘肃冶金, 2011,33(1):1−3. doi: 10.3969/j.issn.1672-4461.2011.01.001
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  76
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回