留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低价氯化钛浆料直接电化学还原制备钛铝合金新工艺研究

朱福兴 马占山 邓斌 穆天柱 邱克辉

Chen Yuyong, Zhang Shuzhi, Kong Fantao, et al. Progress in β-solidifying γ-TiAl based alloys[J]. Chinese Journal of Rare Metals, 2012, 36(1): 154−160. doi: 10.7513/j.issn.1004-7638.2024.01.002
引用本文: Chen Yuyong, Zhang Shuzhi, Kong Fantao, et al. Progress in β-solidifying γ-TiAl based alloys[J]. Chinese Journal of Rare Metals, 2012, 361): 154160. doi: 10.7513/j.issn.1004-7638.2024.01.002
Zhu Fuxing, Ma Zhanshan, Deng Bin, Mu Tianzhu, Qiu Kehui. A new process for preparing Ti-Al alloys from low-valance titanium chlorides slurry by direct electrochemical reduction[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 4-11. doi: 10.7513/j.issn.1004-7638.2024.01.002
Citation: Zhu Fuxing, Ma Zhanshan, Deng Bin, Mu Tianzhu, Qiu Kehui. A new process for preparing Ti-Al alloys from low-valance titanium chlorides slurry by direct electrochemical reduction[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 4-11. doi: 10.7513/j.issn.1004-7638.2024.01.002

低价氯化钛浆料直接电化学还原制备钛铝合金新工艺研究

doi: 10.7513/j.issn.1004-7638.2024.01.002
基金项目: 国家重点基础研究发展计划(亚熔盐体系钒钛铬盐结晶相分离及电化学还原新过程基础研究,2013CB632600)。
详细信息
    作者简介:

    朱福兴,1986年出生,男,云南泸水人,硕士研究生,高级工程师,主要研究方向为钛冶金和镁冶金,E-mail:pzhzfx@sina.com

    通讯作者:

    邱克辉,1956年出生,男,四川资阳人,教授,主要研究方向为钒钛稀土新材料,E-mail:qkh2188@163.com

  • 中图分类号: TF823

A new process for preparing Ti-Al alloys from low-valance titanium chlorides slurry by direct electrochemical reduction

  • 摘要: 针对低价氯化钛(LTC)浆料熔盐电解制备钛铝合金存在的电化学行为研究不系统、合金产品的高温抗氧化特性不明晰等问题,采用电化学工作站、示差热重分析仪等手段对LTC浆料在熔盐体系中电化学行为及合金产品的高温抗氧化特性进行研究。结果表明,LTC浆料在熔盐体系中可直接电化学还原制备Ti-Al合金,且为逐级还原的历程:Ti3+→Ti2+,Al3+→Al,Ti3+/Al3+→Ti-Al合金和Ti2+→Ti;随着熔盐体系中Ti3+离子浓度的增加,钛铝合金的组成变化规律为:Al/Al3Ti→Al3Ti2/Al5Ti2→AlTi/Al0.64Ti0.36→Al0.64Ti0.36/AlTi3→AlTi3→AlTi3/Ti→Ti,产品形貌变化规律为:粗枝晶→细枝晶→细球状结构→粗球状团聚体→细球状团聚体→细球多孔状→多孔状结构。钛铝合金中随着铝含量和产品致密性的增加,合金的抗高温氧化性能逐渐增强,Al0.64Ti0.36/AlTi3合金经高温熔炼后呈Al含量更高的α2/γ和γ组织,使其高温抗氧化性能优于商用Ti48Al2Cr2Nb。钛铝合金产品高温氧化历程为:Ti-Al合金→铝酸钛→金红石/氧化铝,并且形成的氧化物层可有效防止钛铝合金的进一步氧化。
  • 图  1  添加LTC前后Mo和Al工作电极(WE)上的CV曲线

    Figure  1.  CV curves obtained on Mo and Al working electrodes (WE) before and after LTC addition

    图  2  不同温度下KCl-LiCl-MgCl2-LTC体系的CP曲线

    Figure  2.  CP curves of KCl-LiCl-MgCl2-LTC system at different temperatures

    (a)450 ℃;(b)500 ℃;(c)550 ℃;(d)600 ℃;(e)650 ℃;(f)700 ℃

    图  3  不同温度下1/2-J曲线和其计算的扩散系数与温度关系

    (a)1/2-J曲线;(b)扩散系数与温度关系

    Figure  3.  1/2-J curves and the diffusion coefficient of Ti3+/Ti2+ at different temperatures

    图  4  不同钛铝比([Ti]/[Ti]+[Al]))合金产品氧化的TG-DSC曲线

    Figure  4.  TG-DSC curves of Ti-Al alloy products with the change of [Ti]/([Ti]+[Al])

    (a)Ti;(b)AlTi3/Ti;(c)AlTi3;(d)Al0.64Ti0.36/AlTi3

    图  5  烧结(a)和熔锭(b)钛铝合金的金相组织形貌

    Figure  5.  Metallographic morphology of sintered and ingot Ti-Al alloys

    图  6  钛铝合金锭的外观(a)、金相组织(b)和SEM-EDS(c)结果

    Figure  6.  Appearance (a), metallographic structure (b) and SEM-EDS (c) of Ti-Al alloy ingot

    图  7  烧结钛铝(a)、熔锭钛铝(b)和Ti48 Al2 Cr2 Nb(c)合金的TG-DSC曲线

    Figure  7.  TG-DSC curves of the sintered Ti-Al (a), ingot Ti-Al (b) and Ti48 Al2 Cr2 Nb alloys (c)

    图  8  氧化后熔锭钛铝(a)和Ti48Al2Cr2Nb(b)合金的SEM形貌

    Figure  8.  SEM images of the Ti-Al ingot (a)and Ti48Al2Cr2Nb alloys (b) after oxidation

    图  9  熔锭钛铝(a)和Ti48Al2Cr2Nb(b)合金表面氧化层厚度检测结果

    Figure  9.  Results of surface oxide layer thickness of Ti-Al ingot and Ti48Al2Cr2Nb alloys

    图  10  钛铝合金氧化产物的MLA色差图(a)和SEM-EDS结果(b)

    Figure  10.  MLA color difference diagram (a) and SEM-EDS of Ti-Al alloys (b) after oxidized

    表  1  电解质中[Ti]/([Ti]+[Al])比例对阴极产物组成及形貌的影响

    Table  1.   The effect of molar ratios of [Ti]/([Ti]+[Al]) in electrolytes on the compositions and morphology of cathodic products

    电解质[Ti]/([Ti]+[Al])阴极产物[Ti]/([Ti]+[Al])物相组成形貌特征
    0.150.182Al、Al3Ti粗大枝晶
    0.380.394Al3Ti2,Al5Ti2细枝晶
    0.500.485AlTi、Al0.64Ti0.36细球状结构
    0.690.725Al0.64Ti0.36、AlTi3粗状况团聚体
    0.770.764AlTi3细球状团聚体
    0.830.880AlTi3、Ti细球多孔状
    1.001.000Ti多孔状
    下载: 导出CSV

    表  2  钛铝合金锭高温氧化后重量变化情况

    Table  2.   Weight changes of Ti-Al alloy ingot after high-temperature oxidation

    合金类别 氧化前/g 氧化后/g 增重率/%
    钛铝合金锭 3.018 3.059 1.36
    Ti48Al2Cr2Nb 1.222 1.229 0.57
    下载: 导出CSV
  • [1] Wu L, Xia J, Cao H, et al. Improving the high-temperature oxidation resistance of TiAl alloy by anodizing in methanol/NaF solution[J]. Oxidation of Metals, 2018,90:617−631. doi: 10.1007/s11085-018-9858-1
    [2] Wu X. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006,14(10-11):1114−1122. doi: 10.1016/j.intermet.2005.10.019
    [3] Chen Yuyong, Zhang Shuzhi, Kong Fantao, et al. Progress in β-solidifying γ-TiAl based alloys[J]. Chinese Journal of Rare Metals, 2012,36(1):154−160. (陈玉勇, 张树志, 孔凡涛, 等. 新型β-γTiAl合金的研究进展[J]. 稀有金属, 2012,36(1):154−160. doi: 10.3969/j.issn.0258-7076.2012.01.027

    Chen Yuyong, Zhang Shuzhi, Kong Fantao, et al. Progress in β-solidifying γ-TiAl based alloys[J]. Chinese Journal of Rare Metals, 2012, 361): 154160. doi: 10.3969/j.issn.0258-7076.2012.01.027
    [4] Zhang X, Li C, Wu M, et al. Atypical pathways for lamellar and twinning transformations in rapidly solidified TiAl alloy[J]. Acta Materialia, 2022,227:117718. doi: 10.1016/j.actamat.2022.117718
    [5] Ouyang Hongwu, Liu Yong, He Yuehui, et al. Development and application of TiAl base alloy valve[J]. Materials Reports, 2003,17(4):8−10. (欧阳鸿武, 刘咏, 贺跃辉, 等. TiAl基合金排气阀的研制和应用前景[J]. 材料导报, 2003,17(4):8−10.

    Ouyang Hongwu, Liu Yong, He Yuehui, et al. Development and application of TiAl base alloy valve[J]. Materials Reports, 2003, 174): 810.
    [6] Yuan Naiqiang, Xu Yong, Xu Rongfu, et al. Research on the casting process of high Nb-TiAl alloy exhaust valve[J]. Foundry Technology, 2018,39(12):2728−2731. (袁乃强, 徐勇, 许荣福, 等. 高Nb-TiAl合金排气阀铸造成形工艺研究[J]. 铸造技术, 2018,39(12):2728−2731.

    Yuan Naiqiang, Xu Yong, Xu Rongfu, et al. Research on the casting process of high Nb-TiAl alloy exhaust valve[J]. Foundry Technology, 2018, 3912): 27282731.
    [7] Yang Rui. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015,51(2):129−147. (杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015,51(2):129−147. doi: 10.11900/0412.1961.2014.00396

    Yang Rui. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 512): 129147. doi: 10.11900/0412.1961.2014.00396
    [8] Wang Mengguang, Sun Jianke, Chen Zhiqiang. Current status on melting and casting process of gama TiAl based alloy[J]. Titanium Industry Progress, 2010(4):1−4. (王孟光, 孙建科, 陈志强. TiAl基合金的熔炼与铸造成形工艺研究现状[J]. 钛工业进展, 2010(4):1−4.

    Wang Mengguang, Sun Jianke, Chen Zhiqiang. Current status on melting and casting process of gama TiAl based alloy[J]. Titanium Industry Progress, 20104): 14.
    [9] Yu Lanlan, Mao Xiaonan, Zhang Yingming, et al. Development of electron-beam cold hearth single melt process for titanium alloy ingots[J]. Titanium Industry Progress, 2009(2):14−18. (于兰兰, 毛小南, 张英明, 等. 电子束冷床炉单次熔炼钛合金铸锭研究进展[J]. 钛工业进展, 2009(2):14−18. doi: 10.3969/j.issn.1009-9964.2009.02.003

    Yu Lanlan, Mao Xiaonan, Zhang Yingming, et al. Development of electron-beam cold hearth single melt process for titanium alloy ingots[J]. Titanium Industry Progress, 20092): 1418. doi: 10.3969/j.issn.1009-9964.2009.02.003
    [10] Narayana P L, Li C L, Kim S W, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800 ℃[J]. Materials Science and Engineering, 2019,756(5):41−45.
    [11] Hu D, Dolganov A, Ma M, et al. Development of the Fray-Farthing-Chen Cambridge process: towards the sustainable production of titanium and its alloys[J]. JOM, 2018,70(2):129−137. doi: 10.1007/s11837-017-2664-4
    [12] Yan B, Yan Y, Zhang M, et al. Electrochemical formation of titanium aluminum alloys from Ti2O3 in-situ chloridized by AlCl3 in chloride melts[J]. Electrochimical Acta, 2016,188:269−276. doi: 10.1016/j.electacta.2015.11.137
    [13] Lahiri A, Das R. Spectroscopic studies of the ionic liquid during the electrodeposition of Al–Ti alloy in 1-ethyl-3-methylimidazolium chloride melt[J]. Materials Chemistry & Physics, 2012,132(1):34−38.
    [14] He Hualin, Qiu Kehui, Sun Zhaohui, et al. Heat balance calculation for preparation of vanadium removal slurry[J]. Chinese Journal of Rare Metals, 2016,40(2):61−65. (何华林, 邱克辉, 孙朝晖, 等. 除钒浆液制备过程的热平衡计算[J]. 稀有金属, 2016,40(2):61−65.

    He Hualin, Qiu Kehui, Sun Zhaohui, et al. Heat balance calculation for preparation of vanadium removal slurry[J]. Chinese Journal of Rare Metals, 2016, 402): 6165.
    [15] Li Liang, Li Kaihua, Miao Qingdong, et al. Preparation and application of vanadium removing reagent in refining crude TiCl4[J]. Chinese Journal of Rare Metals, 2015,39(7):666−672. (李亮, 李开华, 苗庆东, 等. 四氯化钛精制除钒试剂的制备及应用研究[J]. 稀有金属, 2015,39(7):666−672.

    Li Liang, Li Kaihua, Miao Qingdong, et al. Preparation and application of vanadium removing reagent in refining crude TiCl4[J]. Chinese Journal of Rare Metals, 2015, 397): 666672.
    [16] Miao Qingdong, Li Kaihua, He Anxi, et al. Preparation and application of TiCl3 slurry used in Al-powder vanadium removal of crude TiCl4[J]. Chinese Journal of Rare Metals, 2017(41):1369−1373. (苗庆东, 李开华, 何安西, 等. 粗四氯化钛铝粉除钒用TiCl3浆液制备及应用[J]. 稀有金属, 2017(41):1369−1373.

    Miao Qingdong, Li Kaihua, He Anxi, et al. Preparation and application of TiCl3 slurry used in Al-powder vanadium removal of crude TiCl4[J]. Chinese Journal of Rare Metals, 201741): 13691373.
    [17] Zhu F X, Li L, Cheng X Z, et al. Direct electrochemical reduction of low titanium chlorides into titanium aluminide alloy powders from molten eutectic KCl–LiCl–MgCl2[J]. Electrochimical Acta, 2020,357:1−10.
    [18] Zhu F, Li K, Song W, et al. Composition and structure of Ti-Al alloy powders formed by electrochemical co-deposition in KCl-LiCl-MgCl2-TiCl3-AlCl3 molten salt[J]. Intermetallics, 2021,139:107341. doi: 10.1016/j.intermet.2021.107341
    [19] Kim S, Matsunaga N, Kuroda K, et al. Effect of [Al(DMSO2)3]3+ concentration on Al electrodeposition from AlCl3/dimethylsulfone baths[J]. Journal of Electrochemical Science and Technology, 2018,9(1):69−77. doi: 10.33961/JECST.2018.9.1.69
    [20] Zhu F, Li L, Song W, et al. Electrochemical synthesis of Ti-Al-V alloy by chlorination of Ti2O3 and V2O3 in AlCl3-containing molten chloride salt[J]. Journal Materials Research and Technology, 2021,13:1243−1253. doi: 10.1016/j.jmrt.2021.05.063
    [21] Song J, Mukherjee A. Influence of F- on the electrochemical properties of titanium ions and Al-Ti alloy electrodeposition in molten AlCl3-NaCl[J]. RSC Advances, 2020,6:82049−82056.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回