留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超细VO2粉体的超声喷雾热解装置优化及试验研究

辛亚男 彭穗 刘波

辛亚男, 彭穗, 刘波. 超细VO2粉体的超声喷雾热解装置优化及试验研究[J]. 钢铁钒钛, 2021, 42(1): 16-23. doi: 10.7513/j.issn.1004-7638.2021.01.003
引用本文: 辛亚男, 彭穗, 刘波. 超细VO2粉体的超声喷雾热解装置优化及试验研究[J]. 钢铁钒钛, 2021, 42(1): 16-23. doi: 10.7513/j.issn.1004-7638.2021.01.003
Xin Yanan, Peng Sui, Liu Bo. Simulation and experimental study on ultrasonic spray pyrolysis of ultrafine vanadium dioxide powder[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 16-23. doi: 10.7513/j.issn.1004-7638.2021.01.003
Citation: Xin Yanan, Peng Sui, Liu Bo. Simulation and experimental study on ultrasonic spray pyrolysis of ultrafine vanadium dioxide powder[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 16-23. doi: 10.7513/j.issn.1004-7638.2021.01.003

超细VO2粉体的超声喷雾热解装置优化及试验研究

doi: 10.7513/j.issn.1004-7638.2021.01.003
详细信息
    作者简介:

    辛亚男(1989—),男,山东聊城人,博士,高级工程师,主要从事计算流体力学、化工过程强化及纳米材料开发等研究,E-mail:917031125@163.com

  • 中图分类号: TF841.3

Simulation and experimental study on ultrasonic spray pyrolysis of ultrafine vanadium dioxide powder

  • 摘要: 针对喷雾热解过程,采用计算流体力学(CFD)方法对其装置进行了设计优化,通过对比分析,对管式炉的进出口段进行保温优化来改善管内温度和速度场分布不均的问题;设计搭建了超声喷雾热解装置,并通过试验考察了不同的前驱体溶液、前驱体浓度、热解温度对于产物粒径和形貌的影响。结果表明:草酸氧钒溶液超声热解后的产物主要为V2O3,而硫酸氧钒及二氯氧钒热解后的产物为蓝黑色VO2颗粒;随着硫酸氧钒前驱体浓度的增加,大颗粒粉体明显增多,颗粒粒径大于100 nm;二氯氧钒热解后的VO2颗粒以二次粒子和一次粒子的形式存在,随着热解温度和前驱体浓度的提高,颗粒分散性明显提高,小粒径颗粒增加,粒径基本在100 nm左右。
  • 图  1  管式炉三维几何模型及网格划分

    Figure  1.  Geometric model and mesh of the tubular quartz reactor

    图  2  不同进口流速下管式炉内的温度分布

    Figure  2.  Temperature distribution in the tubular quartz reactor with different inlet flow rates

    图  3  不同进口流速下管式炉的轴面速度分布

    Figure  3.  Axial velocity distribution in the tubular quartz reactor with different inlet flow rates

    图  4  进口流速0.5 m/s下管式炉的轴面速度矢量

    Figure  4.  Axial velocity vector distribution in the tubular quartz reactor with inlet flow rate of 0.5 m/s

    图  5  改进后进口流速0.5 m/s条件下管式炉的轴面云图

    Figure  5.  Axial velocity distribution in the improved tubular quartz reactor with inlet flow rate of 0.5 m/s

    图  6  超声喷雾热解装置示意

    Figure  6.  Schematic diagram of ultrasonic spray pyrolysis device

    图  7  超声喷雾热解试验装置

    Figure  7.  Experimental apparatus of ultrasonic spray pyrolysis

    图  8  不同前驱体热解产物的XRD谱

    Figure  8.  XRD patterns of pyrolysis products of different precursor solutions

    图  9  不同前驱体的热解产物形貌

    Figure  9.  Morphology of pyrolysis products of different precursors

    图  10  硫酸氧钒前驱体浓度对于产物形貌的影响

    Figure  10.  Effect of concentration of vanadyl sulfate precursor on product morphology

    图  11  热解温度对于二氯氧钒热解产物形貌的影响

    Figure  11.  Effect of pyrolysis temperature on the morphology of pyrolytic products of vanadyl dichloride

    图  12  前驱体浓度对于二氯氧钒热解产物形貌的影响

    Figure  12.  Effect of precursor concentration on the morphology of pyrolysis products of vanadyl dichloride

    表  1  固体硫酸氧钒中主要化学成分

    Table  1.   The main compositions of solid vanadyl sulfate %

    KNaFeCrSiAlCaMgMnP
    0.0033<0.0020.0037<0.002<0.002<0.002<0.002<0.002<0.002<0.002
    下载: 导出CSV

    表  2  超声喷雾热解法制备VO2粉体的试验参数

    Table  2.   The experimental parameters for preparation of VO2 powder by ultrasonic spray pyrolysis

    试验编号前驱体溶液浓度/(mol·L−1)反应温度/℃
    EX1 VOSO4 0.1 750
    EX2 VOSO4 0.01 750
    EX3 VOC2O4 0.1 380
    EX4 VOCl2 0.1 500
    EX5 VOCl2 0.1 700
    EX6 VOCl2 0.2 700
    下载: 导出CSV
  • [1] Milosevic O B, Mancic L, Rabanal M E, et al. Aerosol route in processing of nanostructured functional materials[J]. KONA Powder and Particle Journal, 2009,27:84−106. doi: 10.14356/kona.2009010
    [2] Patil P S. Versatility of chemical spray pyrolysis technique[J]. Mater. Chem. Phys., 1999,59:185−198. doi: 10.1016/S0254-0584(99)00049-8
    [3] Kodas T T, Hampden-Smith M J. Aerosol processing of materials[M]. New York: Wiley-VCH, 1998.
    [4] Arpagaus C. A novel laboratory-scale spray dryer to produce nano particles[J]. Drying Technol, 2012,30:1113−1121. doi: 10.1080/07373937.2012.686949
    [5] Arun M. Principles, classification and selection of dryers[C]//In Handbook of Industrial Drying. Third Edition.CRC Press, 2006.
    [6] Dosev D, Guo B, Kennedy I M. Photoluminescence of as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis[J]. J. Aerosol Sci., 2006,37:402−412. doi: 10.1016/j.jaerosci.2005.08.009
    [7] Zhang Yue, Yan Jiazhen, Huang Wanxia, et al. Study on thermochromic properties of the Mo –doped VO2 thin films on muscovite subtrate[J]. Iron Steel Vanadium Titanium, 2008,29(2):5−8. (张月, 颜家振, 黄婉霞, 等. 云母衬底掺钼二氧化钒薄膜热致相变性能研究[J]. 钢铁钒钛, 2008,29(2):5−8. doi: 10.7513/j.issn.1004-7638.2008.02.002
    [8] Pu Hong, Tian Congxue. Preparation of porous TiO2 photocatalyst by hydrothermal crystallizing process[J]. Iron Steel Vanadium Titanium, 2014,35(2):31−34, 55. (蒲洪, 田从学. 水热晶化制备多孔二氧化钛[J]. 钢铁钒钛, 2014,35(2):31−34, 55. doi: 10.7513/j.issn.1004-7638.2014.02.006
    [9] Pu Hong. Hydrothermal synthesis of titanium dioxide and its photocatalytic properties evaluation[J]. Iron Steel Vanadium Titanium, 2017,38(3):21−24. (蒲洪. 二氧化钛的水热制备及其催化性能评价[J]. 钢铁钒钛, 2017,38(3):21−24. doi: 10.7513/j.issn.1004-7638.2017.03.003
    [10] Lang R J. Ultrasonic atomization of liquids[J]. Journal of the Acoustical Society of America, 1962,34:6−8. doi: 10.1121/1.1909020
    [11] Zhang Huafu, Sha Hao, Wu Zhiming, et al. Recent progress on vanadium dioxide thin film at terahertz range[J]. Materials Review, 2019,33(15):2513−2523. (张化福, 沙浩, 吴志明, 等. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019,33(15):2513−2523. doi: 10.11896/cldb.18060112
    [12] Dao Rina, Kong Xinru, Zhang Haifeng, et al. Design of a tunable microwave absorber based on vanadium dioxide[J]. Laser Technology, 2019,43(4):557−562. (道日娜, 孔心茹, 章海锋, 等. 一种基于二氧化钒材料的可调谐吸波器设计[J]. 激光技术, 2019,43(4):557−562. doi: 10.7510/jgjs.issn.1001-3806.2019.04.021
    [13] Tang Lu, Huang Wanxia, Wen Hao, et al. Study on thermal insulation properties of nano-VO2 modified plexi glass[J]. Iron Steel Vanadium Titanium, 2019,40(5):55−60. (唐露, 黄婉霞, 文皓, 等. 纳米VO2改性有机玻璃的隔热性能研究[J]. 钢铁钒钛, 2019,40(5):55−60.
    [14] Mwakikunga B W, Sideras-Haddad E, Maaza M. First synthesis of vanadium dioxide by ultrasonic nebula-spray pyrolysis[J]. Optical Materials, 2007,29(5):481−487. doi: 10.1016/j.optmat.2005.10.007
    [15] Bharathi R, Naorem R, Umarji A M. Metal−insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture[J]. Journal of Physics D: Applied Physics, 2015,48(30):305103. doi: 10.1088/0022-3727/48/30/305103
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  39
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-12
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回