Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment
-
摘要: 对TC4钛合金MIG焊焊接接头进行焊后热处理,采用盲孔法、拉伸、冲击、金相、扫描等方法对接头进行试验与分析,研究不同热处理工艺对残余应力、组织和力学性能的影响。结果表明:焊接接头经焊后热处理,横向残余应力和纵向残余应力平均值最大降为74.2 MPa和70.1 MPa;未热处理接头母材区为α+β片层组织,焊缝区为α'针状马氏体组织,热影响区为α和α'混合组织。热处理后,随着热处理温度和时间的增加,焊缝组织中的针状α'马氏体粗化,晶粒尺寸增加;未热处理接头焊后拉伸断裂位置为母材处,接头强度高于母材。在650 ℃+2 h的热处理工艺下,接头延伸率较未热处理状态提高,断裂方式为韧性断裂,保温时间延长至3 h,晶粒粗大、延伸率降低。接头室温冲击功焊后状态能够达到母材的95%,经焊后热处理后接头得到软化,室温冲击功相比焊后状态有所下降。Abstract: Post heat treatment processes had been carried out on TC4 titanium alloy MIG welded joints. The effects of different heat treatment processes on residual stress, microstructure and mechanical properties on resulting TC4 titanium alloy MIG welded joints had been investigated through the blind-hole method, mechanical test and microstructure observation. The results show that average transverse residual stress and longitudinal residual stress of the welded joint after post heat treatment are reduced down to 74.2 MPa and 70.1 MPa, respectively. The base material is α+β lamellar structure, and the weld joint is α' needle shape martensite structure, the heat-affected zone is a mixed structure of α and α'. After heat treatment, with increasing heat treatment temperature and prolonging time, the acicular α' martensite in the weld structure becomes coarser, and grain size increases. For unheated-treatment joint, tensile fracture position locates at base metal, indicating higher joint strength compared with the base material. When the weld joint is subjected to a heat treatment process of 650 ℃+2 h, the elongation of the joint is higher than that in the unheated state, and the fracture mode is a ductile fracture. When the holding time is extended to 3 h, the grain becomes coarse, and the elongation decreases. The impact energy of the welding joint after post heat treatment at room temperature can reach 95% of that of base metal. The post-weld heat treatment can soften the welding joint, resulting in lower room temperature impact energy than the as-welding joint.
-
Key words:
- TC4 titanium alloy /
- MIG welding /
- post-weld heat treatment /
- mechanical properties /
- microstructure
-
表 1 TC4钛合金MIG焊焊接工艺参数
Table 1. Welding process parameters of TC4 titanium alloy MIG welding
焊接层次 焊接电流/A 焊接速度/
(m·min−1)弧长修正/% 脉冲修正/% 摆动/
(Hz·mm)干伸长
/mm打底层 150 0.4 30 0 3×1 22 填充层 150 0.25 30 0 3×7 22 表 2 真空热处理工艺参数
Table 2. Process parameters of vacuum heat treatment
工艺编号 加热温度T/℃ 保温时间t/h 冷却方式 1# 未热处理 2# 550 3 炉冷 3# 650 2 炉冷 4# 650 3 炉冷 -
[1] Zhao Yongqing, Ge Peng, Xin Shewei. Progress in research and development of titanium alloy materials in the past five years[J]. Progress in Materials in China, 2020,(Z1):527−534,557-558. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020,(Z1):527−534,557-558. [2] Gao Fuyang, Liao Zhiqian, Li Wenya. Welding methods and research status of titanium and titanium alloys[J]. Aviation Manufacturing Technology, 2012,(Z2):86−90. (高福洋, 廖志谦, 李文亚. 钛及钛合金焊接方法与研究现状[J]. 航空制造技术, 2012,(Z2):86−90. [3] 杨东旭. TC4钛合金激光焊接接头溶质元素分布及不均匀性的研究[D]. 武汉: 华中科技大学, 2015.Yang Dongxu. Research on solute element distribution and inhomogeneity of TC4 titanium alloy laser welding joint[D]. Wuhan: Huazhong University of Science and Technology, 2015. [4] Jianxun Z, Shuili G, Xiaoyan L, et al. Frontier and research trends on welding technologies for light metals[J]. Welding & Joining, 2008,(12):5−10,65. [5] Li Yi, Zhao Yongqing, Zeng Weidong. Application and development trend of aviation titanium alloy[J]. Materials Review, 2020,34(S1):280−282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280−282. [6] Lu Xin. Analysis of microstructure and defects of TIG welded joints of TC4 titanium alloy[J]. Iron Steel Vanadium Titanium, 2018,39(4):74−79,92. (陆鑫. TC4钛合金TIG焊接头组织及缺陷分析[J]. 钢铁钒钛, 2018,39(4):74−79,92. doi: 10.7513/j.issn.1004-7638.2018.04.013 [7] Mou Gang, Hua Xueming, Xu Xiaobo, et al. Comparative study on TIG and MIG welding process and performance of 8 mm thick TC4 titanium alloy[J]. Electric Welding Machine, 2020,50(4):70−74,138−139. (牟刚, 华学明, 徐小波, 等. 8 mm 厚TC4钛合金TIG、MIG焊接工艺及性能对比研究[J]. 电焊机, 2020,50(4):70−74,138−139. [8] Zhang Long, Chen Donggao, Wang Dafeng, et al. Research on TC4 titanium alloy laser-MIG hybrid welding[J]. Ordnance Material Science and Engineering, 2019,42(2):73−77. (张龙, 陈东高, 王大锋, 等. TC4钛合金激光-MIG复合焊接研究[J]. 兵器材料科学与工程, 2019,42(2):73−77. [9] Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6 Al-4 V[J]. Metallurgical and Materials Transactions A, 2003,34A:2377. [10] Li Ke, Qi Zhilong, Wu Zhisheng, et al. Observation and analysis of MIG welding droplet transfer and arc shape[J]. Welding, 2016,(1):19−22,69. (李科, 齐志龙, 吴志生, 等. MIG焊熔滴过渡与电弧形态的观察与分析[J]. 焊接, 2016,(1):19−22,69. doi: 10.3969/j.issn.1001-1382.2016.01.004 [11] Lei Z L, Chen Y B, Li L Q, et al. Characteristics of droplet transfer in CO2 laser-MIG hybrid welding with short-circuiting mode[J]. Chinese Journal Mechanical Engineering, 2006,19(2):172−175. doi: 10.3901/CJME.2006.02.172 [12] Chen Rong. The effect of annealing temperature on the structure and properties of Ti-0.3Mo-0.8Ni titanium alloy sheet[J]. Iron Steel Vanadium Titanium, 2021,42(4):62−67. (陈容. 退火温度对Ti-0.3Mo-0.8Ni钛合金板材组织和性能影响[J]. 钢铁钒钛, 2021,42(4):62−67. [13] 钟亮, 付玉, 徐永东, 等. 钛基复合材料耐磨性研究进展[J/OL]. 钢铁钒钛: 1−14. [2021-11-16]. http://kns.cnki.net/kcms/detail/51.1245.TF.20211102.1029.002.html.Zhong Liang, Fu Yu, Xu Yongdong, et al. Research progress on wear resistance of titanium matrix composites[J/OL]. Iron Steel Vanadium Titanium: 1−14. [2021-11-16]. http://kns.cnki. net/kcms/detail/51.1245.TF.20211102.1029.002.html. [14] Zhang Long, Chen Donggao, Zhang Yingying, et al. Research on low-cost TC4 titanium alloy monofilament MIG welding technology and performance[J]. Ordnance Material Science and Engineering, 2021,44(1):93−97. (张龙, 陈东高, 张迎迎, 等. 低成本TC4钛合金单丝MIG焊工艺与性能研究[J]. 兵器材料科学与工程, 2021,44(1):93−97. [15] Huang Dinghui, He Lei, Zhao Shunfeng, et al. The effect of vacuum stress relief annealing temperature on the structure and properties of TA15 titanium alloy forgings[J]. Heat Treatment, 2019,34(6):24−27. (黄定辉, 贺磊, 赵顺峰, 等. 真空去应力退火温度对TA15钛合金锻件组织和性能的影响[J]. 热处理, 2019,34(6):24−27. doi: 10.3969/j.issn.1008-1690.2019.06.006 [16] 回丽, 陆家琛, 周松, 等. 热处理对TC4钛合金激光双束焊接接头疲劳性能的影响[J/OL]. 吉林大学学报(工学版): 1-6[2021-11-16]. https://doi.org/10.13229/j.cnki.jdxbgxb20210589.Hui Li, Lu Jiachen, Zhou Song, et al. Effect of heat treatment on fatigue properties of TC4 titanium alloy laser double beam welding joint[J/OL]. Journal of Jilin University (Engineering Science Edition): 1-6[2021-11-16]. https://doi.org/10.13229/j.cnki.jdxbgxb20210589. [17] Zhang Yaowu, Zeng Weidong, Shi Chunling,et al. The effect of vacuum stress relief annealing on the residual stress and microstructure and properties of TC18 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2011,21(11):2780−2785. (张尧武, 曾卫东, 史春玲, 等. 真空去应力退火对TC18钛合金残余应力及组织性能的影响[J]. 中国有色金属学报, 2011,21(11):2780−2785. -