留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4钛合金MIG焊接头热处理后组织性能研究

何逸凡 陈东高 张龙 王大锋 邵志文 马良超

何逸凡, 陈东高, 张龙, 王大锋, 邵志文, 马良超. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024
引用本文: 何逸凡, 陈东高, 张龙, 王大锋, 邵志文, 马良超. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024
He Yifan, Chen Donggao, Zhang Long, Wang Dafeng, Shao Zhiwen, Ma Liangchao. Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024
Citation: He Yifan, Chen Donggao, Zhang Long, Wang Dafeng, Shao Zhiwen, Ma Liangchao. Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024

TC4钛合金MIG焊接头热处理后组织性能研究

doi: 10.7513/j.issn.1004-7638.2021.06.024
详细信息
    作者简介:

    何逸凡(1995—),男,内蒙古包头人,硕士研究生,研究方向:钛合金及铝合金焊接制造技术,E-mail:582019706@qq.com

    通讯作者:

    陈东高,男,研究员,研究方向:轻质材料制造技术,E-mail:chendg2580@sina.com

  • 中图分类号: TF823,TG456

Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment

  • 摘要: 对TC4钛合金MIG焊焊接接头进行焊后热处理,采用盲孔法、拉伸、冲击、金相、扫描等方法对接头进行试验与分析,研究不同热处理工艺对残余应力、组织和力学性能的影响。结果表明:焊接接头经焊后热处理,横向残余应力和纵向残余应力平均值最大降为74.2 MPa和70.1 MPa;未热处理接头母材区为α+β片层组织,焊缝区为α'针状马氏体组织,热影响区为α和α'混合组织。热处理后,随着热处理温度和时间的增加,焊缝组织中的针状α'马氏体粗化,晶粒尺寸增加;未热处理接头焊后拉伸断裂位置为母材处,接头强度高于母材。在650 ℃+2 h的热处理工艺下,接头延伸率较未热处理状态提高,断裂方式为韧性断裂,保温时间延长至3 h,晶粒粗大、延伸率降低。接头室温冲击功焊后状态能够达到母材的95%,经焊后热处理后接头得到软化,室温冲击功相比焊后状态有所下降。
  • 图  1  典型接头区域及X射线图像

    Figure  1.  Typical joint area and its X-ray image

    图  2  不同焊后热处理工艺下残余应力值

    Figure  2.  Residual stress values of samples under different post-weld heat treatment processes

    图  3  TC4钛合金MIG焊焊接接头显微组织

    (a)焊接接头;(b)母材区;(c)焊缝区;(d)热影响区

    Figure  3.  Microstructure of TC4 titanium alloy MIG welded joint

    图  4  不同焊后热处理工艺下接头焊缝区的微观组织

    Figure  4.  The microstructure of the joint weld zone under different post-weld heat treatment processes

    图  5  不同热处理工艺下各接头拉伸性能

    Figure  5.  Tensile properties of individual joint under different heat treatment processes

    图  6  MIG焊接头断口形貌

    (a)整体;(b)局部;(c)放大;(d)韧窝

    Figure  6.  Fracture appearance of MIG welded joint

    图  7  不同焊后热处理条件下的拉伸断口形貌

    Figure  7.  Tensile fracture morphology of samples under different post-weld heat treatment conditions

    图  8  不同焊后热处理工艺下接头的室温冲击功

    Figure  8.  Room temperature impact energy of joints under different post-weld heat treatment processes

    表  1  TC4钛合金MIG焊焊接工艺参数

    Table  1.   Welding process parameters of TC4 titanium alloy MIG welding

    焊接层次焊接电流/A焊接速度/
    (m·min−1
    弧长修正/%脉冲修正/%摆动/
    (Hz·mm)
    干伸长
    /mm
    打底层1500.43003×122
    填充层1500.253003×722
    下载: 导出CSV

    表  2  真空热处理工艺参数

    Table  2.   Process parameters of vacuum heat treatment

    工艺编号加热温度T/℃保温时间t/h冷却方式
    1#未热处理
    2#5503炉冷
    3#6502炉冷
    4#6503炉冷
    下载: 导出CSV
  • [1] Zhao Yongqing, Ge Peng, Xin Shewei. Progress in research and development of titanium alloy materials in the past five years[J]. Progress in Materials in China, 2020,(Z1):527−534,557-558. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020,(Z1):527−534,557-558.
    [2] Gao Fuyang, Liao Zhiqian, Li Wenya. Welding methods and research status of titanium and titanium alloys[J]. Aviation Manufacturing Technology, 2012,(Z2):86−90. (高福洋, 廖志谦, 李文亚. 钛及钛合金焊接方法与研究现状[J]. 航空制造技术, 2012,(Z2):86−90.
    [3] 杨东旭. TC4钛合金激光焊接接头溶质元素分布及不均匀性的研究[D]. 武汉: 华中科技大学, 2015.

    Yang Dongxu. Research on solute element distribution and inhomogeneity of TC4 titanium alloy laser welding joint[D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [4] Jianxun Z, Shuili G, Xiaoyan L, et al. Frontier and research trends on welding technologies for light metals[J]. Welding & Joining, 2008,(12):5−10,65.
    [5] Li Yi, Zhao Yongqing, Zeng Weidong. Application and development trend of aviation titanium alloy[J]. Materials Review, 2020,34(S1):280−282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280−282.
    [6] Lu Xin. Analysis of microstructure and defects of TIG welded joints of TC4 titanium alloy[J]. Iron Steel Vanadium Titanium, 2018,39(4):74−79,92. (陆鑫. TC4钛合金TIG焊接头组织及缺陷分析[J]. 钢铁钒钛, 2018,39(4):74−79,92. doi: 10.7513/j.issn.1004-7638.2018.04.013
    [7] Mou Gang, Hua Xueming, Xu Xiaobo, et al. Comparative study on TIG and MIG welding process and performance of 8 mm thick TC4 titanium alloy[J]. Electric Welding Machine, 2020,50(4):70−74,138−139. (牟刚, 华学明, 徐小波, 等. 8 mm 厚TC4钛合金TIG、MIG焊接工艺及性能对比研究[J]. 电焊机, 2020,50(4):70−74,138−139.
    [8] Zhang Long, Chen Donggao, Wang Dafeng, et al. Research on TC4 titanium alloy laser-MIG hybrid welding[J]. Ordnance Material Science and Engineering, 2019,42(2):73−77. (张龙, 陈东高, 王大锋, 等. TC4钛合金激光-MIG复合焊接研究[J]. 兵器材料科学与工程, 2019,42(2):73−77.
    [9] Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6 Al-4 V[J]. Metallurgical and Materials Transactions A, 2003,34A:2377.
    [10] Li Ke, Qi Zhilong, Wu Zhisheng, et al. Observation and analysis of MIG welding droplet transfer and arc shape[J]. Welding, 2016,(1):19−22,69. (李科, 齐志龙, 吴志生, 等. MIG焊熔滴过渡与电弧形态的观察与分析[J]. 焊接, 2016,(1):19−22,69. doi: 10.3969/j.issn.1001-1382.2016.01.004
    [11] Lei Z L, Chen Y B, Li L Q, et al. Characteristics of droplet transfer in CO2 laser-MIG hybrid welding with short-circuiting mode[J]. Chinese Journal Mechanical Engineering, 2006,19(2):172−175. doi: 10.3901/CJME.2006.02.172
    [12] Chen Rong. The effect of annealing temperature on the structure and properties of Ti-0.3Mo-0.8Ni titanium alloy sheet[J]. Iron Steel Vanadium Titanium, 2021,42(4):62−67. (陈容. 退火温度对Ti-0.3Mo-0.8Ni钛合金板材组织和性能影响[J]. 钢铁钒钛, 2021,42(4):62−67.
    [13] 钟亮, 付玉, 徐永东, 等. 钛基复合材料耐磨性研究进展[J/OL]. 钢铁钒钛: 1−14. [2021-11-16]. http://kns.cnki.net/kcms/detail/51.1245.TF.20211102.1029.002.html.

    Zhong Liang, Fu Yu, Xu Yongdong, et al. Research progress on wear resistance of titanium matrix composites[J/OL]. Iron Steel Vanadium Titanium: 1−14. [2021-11-16]. http://kns.cnki. net/kcms/detail/51.1245.TF.20211102.1029.002.html.
    [14] Zhang Long, Chen Donggao, Zhang Yingying, et al. Research on low-cost TC4 titanium alloy monofilament MIG welding technology and performance[J]. Ordnance Material Science and Engineering, 2021,44(1):93−97. (张龙, 陈东高, 张迎迎, 等. 低成本TC4钛合金单丝MIG焊工艺与性能研究[J]. 兵器材料科学与工程, 2021,44(1):93−97.
    [15] Huang Dinghui, He Lei, Zhao Shunfeng, et al. The effect of vacuum stress relief annealing temperature on the structure and properties of TA15 titanium alloy forgings[J]. Heat Treatment, 2019,34(6):24−27. (黄定辉, 贺磊, 赵顺峰, 等. 真空去应力退火温度对TA15钛合金锻件组织和性能的影响[J]. 热处理, 2019,34(6):24−27. doi: 10.3969/j.issn.1008-1690.2019.06.006
    [16] 回丽, 陆家琛, 周松, 等. 热处理对TC4钛合金激光双束焊接接头疲劳性能的影响[J/OL]. 吉林大学学报(工学版): 1-6[2021-11-16]. https://doi.org/10.13229/j.cnki.jdxbgxb20210589.

    Hui Li, Lu Jiachen, Zhou Song, et al. Effect of heat treatment on fatigue properties of TC4 titanium alloy laser double beam welding joint[J/OL]. Journal of Jilin University (Engineering Science Edition): 1-6[2021-11-16]. https://doi.org/10.13229/j.cnki.jdxbgxb20210589.
    [17] Zhang Yaowu, Zeng Weidong, Shi Chunling,et al. The effect of vacuum stress relief annealing on the residual stress and microstructure and properties of TC18 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2011,21(11):2780−2785. (张尧武, 曾卫东, 史春玲, 等. 真空去应力退火对TC18钛合金残余应力及组织性能的影响[J]. 中国有色金属学报, 2011,21(11):2780−2785.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  20
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回