留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene/磷化钴复合材料电催化制氢性能研究

李金洲 陈超 党杰

李金洲, 陈超, 党杰. MXene/磷化钴复合材料电催化制氢性能研究[J]. 钢铁钒钛, 2023, 44(2): 48-54. doi: 10.7513/j.issn.1004-7638.2023.02.007
引用本文: 李金洲, 陈超, 党杰. MXene/磷化钴复合材料电催化制氢性能研究[J]. 钢铁钒钛, 2023, 44(2): 48-54. doi: 10.7513/j.issn.1004-7638.2023.02.007
Li Jinzhou, Chen Chao, Dang Jie. Electrocatalytic hydrogen production performance of MXene/cobalt phosphide composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 48-54. doi: 10.7513/j.issn.1004-7638.2023.02.007
Citation: Li Jinzhou, Chen Chao, Dang Jie. Electrocatalytic hydrogen production performance of MXene/cobalt phosphide composites[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 48-54. doi: 10.7513/j.issn.1004-7638.2023.02.007

MXene/磷化钴复合材料电催化制氢性能研究

doi: 10.7513/j.issn.1004-7638.2023.02.007
基金项目: 国家自然科学基金(52222408)。
详细信息
    作者简介:

    李金洲,1997年出生,男,重庆人,硕士研究生,长期从事电解水制氢的基础研究工作,E-mail:lijinzhou0299@link.tyut.edu.cn

    通讯作者:

    党杰,1988年出生,男,甘肃兰州人,教授,长期从事钒钛资源高值利用、氢冶金、电解水制氢研究工作,E-mail:jiedang@cqu.edu.cn

  • 中图分类号: O643.3,TF823

Electrocatalytic hydrogen production performance of MXene/cobalt phosphide composites

  • 摘要: 针对传统电催化剂材料导电性差、活性位点易堵塞等问题,采用高导电性和优异亲水性的二维碳化钛钒(MXene)作为催化剂负载基底,在此基础上与具有高比表面积的金属有机框架衍生的磷化钴结合制备电解水制氢阴极材料。利用X射线衍射仪(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、密度泛函理论计算(DFT)和电化学测试等手段,研究了复合电极材料的晶体结构、表面形貌特征、活性位点电子结构和电化学特性。结果表明,有机配体中的碳氮元素能有效调节电极材料中活性位点的电子结构,从而改善吸脱附动力学条件;二维MXene进一步降低了电极材料电荷转移电阻,所制备的催化剂在10 mA/cm2电流密度时仅需要114 mV的过电位,且长时间工作后依然保持稳定。研究结果为制备高性能非贵金属析氢催化剂提供了参考和思路。
  • 图  1  MXene(Ti2VC2Tx)(a)、MAX(Ti2VAlC2)(a)、磷化钴(b)的XRD图谱

    Figure  1.  XRD patterns of MXene(Ti2VC2Tx)(a)、MAX(Ti2VAlC2)(a) and cobalt phosphide(b)

    图  2  MAX(a、b)、MXene(c)、磷化钴(d~f)的SEM形貌

    Figure  2.  SEM of MAX (a, b), MXene (c) and cobalt phosphide (d-f)

    图  3  碳化钛钒MXene/磷化钴复合材料的TEM形貌

    Figure  3.  TEM of Ti2VC2Tx/cobalt phosphide composites

    图  4  MXene/磷化钴复合材料的XPS图谱

    Figure  4.  XPS spectrum of MXene/cobalt phosphide composites

    图  5  MXene/磷化钴复合材料的电化学性能

    Figure  5.  Electrochemical performances of MXene/cobalt phosphide composites

    图  6  MXene/磷化钴复合材料的DFT模型和ΔGH*

    Figure  6.  DFT model and ΔGH* of MXene/cobalt phosphide composites

    表  1  试验原料规格与厂家

    Table  1.   Specifications and manufacturers of raw materials

    试剂名称纯度/%生产厂家试剂名称纯度/%生产厂家
    钛粉99阿拉丁N,N-二甲基甲酰胺99.50阿拉丁
    钒粉99阿拉丁氢氧化钾85阿拉丁
    铝粉99阿拉丁次亚磷酸钠98麦克林
    石墨粉99阿拉丁二甲基咪唑99麦克林
    氢氟酸40~49麦克林硝酸钴六水合物99麦克林
    盐酸37麦克林全氟化树脂5阿达玛斯
    四甲基氢氧化铵99.70麦克林20% Pt/C粉末20麦克林
    无水乙醇95川东化工去离子水分析纯自制
    下载: 导出CSV
  • [1] Benck J, Hellstern J, Kibsgaard P, et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catal, 2014,4:3957−3971. doi: 10.1021/cs500923c
    [2] Cao L M, Zhang J, Ding L W, et al. Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting[J]. J Energy Chem, 2022,68:494−520. doi: 10.1016/j.jechem.2021.12.006
    [3] Bavykina A, Kolobov N, Khan I S, et al. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives[J]. Chem Rev, 2020,120:8468−8535.
    [4] Liu T, Li P, Yao N, et al. CoP-doped mof-based electrocatalyst for ph-universal hydrogen evolution reaction[J]. Angew Chem Int Ed, 2019,58:4679−4684.
    [5] Wang P C, Xu Z A, Lin Y Q, et al. MOF-derived N-doped CoP and Fe-doped CoOOH ultrathin nanosheets electrocatalysts for overall water splitting[J]. ACS Sustain Chem, 2020,8:8949−8957.
    [6] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: mxenes: a new family of two-dimensional materials[J]. Adv Mater, 2014,26:992−1005. doi: 10.1002/adma.201304138
    [7] Li J Z, Chen C, Lv Z P, et al. Constructing heterostructures of ZIF-67 derived C, N doped Co2P and Ti2VC2Tx mxene for enhanced OER[J]. J Mater Sci Technol, 2023,145:74−82. doi: 10.1016/j.jmst.2022.10.048
    [8] Cai G R, Yan P, Zhang L L, et al. Metal–organic framework-based hierarchically porous materials: synthesis and applications[J]. Chem Rev, 2021,121:12278−12326. doi: 10.1021/acs.chemrev.1c00243
    [9] Jian K L, Ma W S, Lv Z P, et al. Tuning the electronic structure of the CoP/Ni2P nanostructure by nitrogen doping for an efficient hydrogen evolution reaction in alkaline media[J]. Inorg Chem, 2021,60:18544−18552. doi: 10.1021/acs.inorgchem.1c03145
    [10] Wang M, Ma W S, Lv Z P, et al. Co-doped Ni3N nanosheets with electron redistribution as bifunctional electrocatalysts for efficient water splitting[J]. J Phys Chem Lett, 2021,12:1581−1587. doi: 10.1021/acs.jpclett.0c03804
    [11] Lv Z P, Ma W S, Dang J, et al. Induction of Co2P growth on a MXene (Ti3C2Tx)-Modified self-supporting electrode for efficient overall water splitting[J]. J Phys Chem Lett, 2021,12:4841−4848. doi: 10.1021/acs.jpclett.1c01345
    [12] Zou Z H, Wang J L, Pan H R, et al. Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating[J]. J Mater Chem A, 2020,8:14099−14105. doi: 10.1039/D0TA04025H
    [13] He Z Q, Rong T D, Li Y, et al. Two-dimensional TiVC solid-solution MXene as surface-enhanced raman scattering substrate[J]. ACS Nano, 2022,16:4072−4083. doi: 10.1021/acsnano.1c09736
    [14] Lv Z P, Ma W S, Wang M, et al. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media[J]. Adv Funct Mater, 2021,31:2102576. doi: 10.1002/adfm.202102576
    [15] Zhang C L, Xie Y, Liu J T, et al. 1D core−shell MOFs derived CoP nanoparticles-embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts[J]. Chem Eng J, 2021,419:129977. doi: 10.1016/j.cej.2021.129977
    [16] Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution[J]. J Electrochem Soc, 2005,152:J23−J26. doi: 10.1149/1.1856988
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  79
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回