留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强钢板坯凝固过程模拟与工艺优化

张攀 时朋召 谢世正 梁亮 徐李军 王明林

张攀, 时朋召, 谢世正, 梁亮, 徐李军, 王明林. 高强钢板坯凝固过程模拟与工艺优化[J]. 钢铁钒钛, 2023, 44(2): 132-140. doi: 10.7513/j.issn.1004-7638.2023.02.019
引用本文: 张攀, 时朋召, 谢世正, 梁亮, 徐李军, 王明林. 高强钢板坯凝固过程模拟与工艺优化[J]. 钢铁钒钛, 2023, 44(2): 132-140. doi: 10.7513/j.issn.1004-7638.2023.02.019
Zhang Pan, Shi Pengzhao, Xie Shizheng, Liang Liang, Xu Lijun, Wang Minglin. Solidification process simulation and process optimization of high strength steel slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 132-140. doi: 10.7513/j.issn.1004-7638.2023.02.019
Citation: Zhang Pan, Shi Pengzhao, Xie Shizheng, Liang Liang, Xu Lijun, Wang Minglin. Solidification process simulation and process optimization of high strength steel slab[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(2): 132-140. doi: 10.7513/j.issn.1004-7638.2023.02.019

高强钢板坯凝固过程模拟与工艺优化

doi: 10.7513/j.issn.1004-7638.2023.02.019
详细信息
    作者简介:

    张攀,1998年出生,男,山东德州人,硕士研究生,主要研究方向为金属凝固,连铸,E-mail:zhangpan19980203@163.com

    通讯作者:

    徐李军,1978年出生,男,北京人,博士,教授,主要研究方向为连铸技术、板坯质量,E-mail:ljxuah@sina.com

  • 中图分类号: TF777

Solidification process simulation and process optimization of high strength steel slab

  • 摘要: 以凝固参数测定和铸坯表面温度测量结果为验证边界条件,应用ProCAST软件对960QT钢板坯连铸过程中的传热和凝固过程进行了模拟,分析了拉速、过热度对铸坯温度场、液芯长度的影响,得出在拉速为0.9 m/min,过热度为23 ℃工况下,960QT板坯的凝固终点位置距离弯月面18.43 m;在浇注温度为1535 ℃时,拉速每增加0.1 m/min,凝固末端位置向后移动2.7 m左右;在拉速为0.9 m/min时,过热度每增加10 ℃,凝固末端位置向后移动0.4 m左右。此外,对轻压下系统的压下位置和压下量进行了优化,由3个扇形段压下改为2个扇形段压下,6、7段压下量改为2.0、2.5 mm。工艺优化后,铸坯中心偏析和中心疏松得到明显改善,中心碳偏析指数由1.85降至1.09。
  • 图  1  射钉试验中硫化物扩散示意

    Figure  1.  Schematic diagram of sulfide diffusion in nail shooting test

    图  2  960QT冷却凝固过程热物性参数

    Figure  2.  Thermal property parameters during 960QT cooling and solidification process

    图  3  宽面1/4处表面温度模拟值与测量值对比

    Figure  3.  Comparison of the simulated and measured surface temperature at 1 / 4 of the wide surface

    图  4  射钉试验试样及凝壳厚度的实测值和计算曲线

    Figure  4.  Slab sample for nail shooting experiment, measured value and calculated curve of shell thickness

    图  5  二冷区不同位置处的固相率

    Figure  5.  Solid rates at different positions of the secondary cooling zone

    图  6  拉速0.9 m/min时板坯各位置的温度变化曲线

    Figure  6.  Temperature change curve at each position of the billet at a drawing speed of 0.9 m/min

    图  7  不同拉速条件下铸坯表面温度和中心温度以及中心固相率曲线

    Figure  7.  Surface temperature, center temperature and center solid ratio curves of billet at different casting speeds

    图  8  拉速对凝固末端位置的影响

    Figure  8.  Influence of tensile speed on the position of solidification end

    图  9  不同过热度条件下铸坯表面温度和中心温度以及中心固相率曲线

    Figure  9.  Surface temperature, center temperature and center solid ratio curves of billet under different superheat conditions

    图  10  过热度对凝固末端位置的影响

    Figure  10.  Influence of superheat on the positions of the solidified end

    图  11  工艺优化前后铸坯低倍组织

    Figure  11.  Macrograph of low picking before and after process optimization

    图  12  铸坯厚度方向碳偏析指数

    Figure  12.  Carbon segregation index along the slab thickness direction

    表  1  试验钢种的主要化学成分

    Table  1.   Main chemical composition of the steel %

    CSiMnPSAlCaTi
    0.160.251.230.00940.00270.03290.00150.019
    下载: 导出CSV

    表  2  二冷区参数

    Table  2.   Parameters of secondary cooling zone

    冷却区起始位置/cm结束位置/cm
    L1(宽面)8088
    L2(窄面)8088
    L388174
    L4174283
    L5283440
    L6440629
    L76291008
    L810081616
    L916162038
    L1020382668
    L1126683298
    下载: 导出CSV

    表  3  二冷区冷却水量

    Table  3.   Cooling water quantity in secondary cooling zone L/min

    L1L2L3L4L5L6L7L8L9L10L11
    727825820819416018916683174
    下载: 导出CSV

    表  4  温度测量值与模拟值对比

    Table  4.   Comparison of the measured and simulated temperature values

    拉速/(m·min−1)位置/m计算宽面中心温度/℃实测宽面温度/℃计算误差率/%
    0.918.6310009841.6
    0.920.739879592.9
    0.922.839709403.2
    下载: 导出CSV

    表  5  960QT钢凝固计算实测结果对比

    Table  5.   Comparison of solidification calculation and measured results of 960QT steel

    拉速/(m·min−1)距弯月面距离/m计算凝固厚度/mm凝固层厚度/mm计算误差率/%
    0.916.5100102.52.4
    下载: 导出CSV

    表  6  优化前后的轻压下参数对比

    Table  6.   Comparison of soft reduction parameters before and after optimization

    压下位置距结晶器
    距离/m
    优化前压下
    量/mm
    优化后压下
    量/mm
    5段12.37~14.431.60
    6段14.43~16.51.62.0
    7段16.5~18.631.62.5
    下载: 导出CSV
  • [1] Mu P, Nadot Y, Nadot-Martin C, et al. Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6[J]. International Journal of Fatigue, 2014,63:97−109. doi: 10.1016/j.ijfatigue.2014.01.011
    [2] Pascon F, Habraken A M. Finite element study of the effect of some local defects on the risk of transverse cracking incontinuous casting of steel slabs[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(21-24):2285−2299. doi: 10.1016/j.cma.2006.07.017
    [3] Petr Haušild, Clotilde Berdin, Philippe Bompard, et al. Ductile fracture of duplex stainless steel with casting defects[J]. International Journal of Pressure Vessels and Piping, 2001,78(9):607−616. doi: 10.1016/S0308-0161(01)00069-2
    [4] Cenanovic M B, Maureira H A, Ng M K C, et al. Electromagnetic technology for continuous casting in the steel industry[J]. Direct Rolling and Hot Charging of Strand Cast Billets, 1989:139−148.
    [5] Guo Liangliang, Tian Yong, Yao Man, et al. Temperature distribution and dynamic control of secondary cooling in slab continuous casting[J]. International Journal of Minerals, Metallurgy and Materials, 2009,16(6):626−631.
    [6] Chen Yong, Xiao Mingfu, Wu Guorong. Dynamic soft reduction technology for bloom casting[J]. Journal of Iron and Steel Research, International, 2010,17(6):1−5. doi: 10.1016/S1006-706X(10)60104-5
    [7] 蔡开科. 浇注与凝固[M]. 北京: 冶金工业出版社, 1987: 83-106.

    Cai Kaike. Pouring and solidification[M]. Beijing: Metallurgical Industry Press, 1987: 83-106.
    [8] Li Jinghong, Jia Hongming, Li Xiaowei, et al. Determination of solidified shell thinkness of continuous casting slab at Angang[J]. Steelmaking, 2008,24(6):17−18,21. (李惊鸿, 贾洪明, 李晓伟, 等. 鞍钢厚板坯凝固坯壳厚度的测定[J]. 炼钢, 2008,24(6):17−18,21.
    [9] Li Pengfei, Wang Minglin, Zhang Zhenxue, et al. Reaserch on measurement of Q550D steel solidified slab shell thickness[J]. Hot Working Technology, 2019,48(1):98−102. (李鹏飞, 王明林, 张振学, 等. Q550D凝固坯壳厚度测定研究[J]. 热加工工艺, 2019,48(1):98−102.
    [10] Ruan Xibao, Tian Yushi, Xu Lijun, et al. Effect of continuous casting technological parameters on solidification end point of slab[J]. Continuous Casting, 2016,41(5):5−10. (阮细保, 田玉石, 徐李军, 等. 连铸工艺参数对板坯凝固终点的影响[J]. 连铸, 2016,41(5):5−10. doi: 10.13228/j.boyuan.issn1005-4006.20160073
    [11] Xie Guiqiang, Xu Lijun, Zou Jinzhong, et al. Application of nail-shooting technique in forecasting model of slab solidification end point[J]. China Metallurgy, 2016,26(3):42−46. (谢桂强, 徐李军, 邹锦忠, 等. 射钉法在铸坯凝固终点预报模型中的应用[J]. 中国冶金, 2016,26(3):42−46. doi: 10.13228/j.boyuan.issn1006-9356.20150142
    [12] Xu Lijun, Qiu Shengtao, Zhang Xingzhong. Solidification parameters measurement and soft reduction process optimization of slab[J]. Continuous Casting, 2014,(4):1−8. (徐李军, 仇圣桃, 张兴中. 板坯凝固参数测定及轻压下工艺优化[J]. 连铸, 2014,(4):1−8. doi: 10.13228/j.boyuan.issn1005-4006.2014.04.001
    [13] 李杰. 连铸坯凝固组织的模拟[D]. 沈阳: 东北大学, 2010.

    Li Jie. Simulation of solidification structure in continuous casting billet[D]. Shenyang: Northeastern University, 2010.
    [14] Savage J, Pritchard W H. The problem of rupture of the billet in the continuous casting of steel[J]. Iron Steel Inst. , London, 1954,178(3):269−277.
    [15] 黄燕. 立式半连铸特厚板坯凝固过程的模拟分析[D]. 武汉: 武汉科技大学, 2014.

    Huang Yan. Modeling of solidification process of extra thick plate slab in vertical semi-continuous casting[D]. Wuhan: Wuhan University of Science and Technology, 2014.
    [16] 曹广畴. 现代板胚连铸[M]. 北京: 冶金工业出版社, 1994.

    Cao Guangchou. Modern slab continuous casting[M]. Beijing: Metallurgical Industry Press, 1994.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  40
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回