留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al3+对偏钛酸煅烧过程的影响和作用机制研究

路瑞芳 杨芳 刘婵 郝琳

路瑞芳, 杨芳, 刘婵, 郝琳. Al3+对偏钛酸煅烧过程的影响和作用机制研究[J]. 钢铁钒钛, 2023, 44(4): 25-32. doi: 10.7513/j.issn.1004-7638.2023.04.004
引用本文: 路瑞芳, 杨芳, 刘婵, 郝琳. Al3+对偏钛酸煅烧过程的影响和作用机制研究[J]. 钢铁钒钛, 2023, 44(4): 25-32. doi: 10.7513/j.issn.1004-7638.2023.04.004
Lu Ruifang, Yang Fang, Liu Chan, Hao Lin. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 25-32. doi: 10.7513/j.issn.1004-7638.2023.04.004
Citation: Lu Ruifang, Yang Fang, Liu Chan, Hao Lin. Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 25-32. doi: 10.7513/j.issn.1004-7638.2023.04.004

Al3+对偏钛酸煅烧过程的影响和作用机制研究

doi: 10.7513/j.issn.1004-7638.2023.04.004
基金项目: 国家自然科学基金青年科学基金项目(编号:22108019)。
详细信息
    作者简介:

    路瑞芳,1984年出生,女,河南开封人,高级工程师,通讯作者,主要从事硫酸法钛白工艺开发及二氧化钛应用研究,E-mail: lulu195658@163.com

    通讯作者:

    路瑞芳,1984年出生,女,河南开封人,高级工程师,通讯作者,主要从事硫酸法钛白工艺开发及二氧化钛应用研究,E-mail: lulu195658@163.com

  • 中图分类号: TF823,TB34

Study on the effect and mechanism of Al3+ during the calcination of metatitanic acid

  • 摘要: 硫酸法钛白生产工艺中,偏钛酸经不同盐处理和高温煅烧后获得适宜粒径的金红石二氧化钛是制备颜料钛白的基础,铝系盐处理是目前普遍采用的盐处理体系之一,但目前铝盐在煅烧过程的作用机制尚不明确。以硫酸法钛白生产中间物料二洗偏钛酸为原料,仅以硫酸铝作为盐处理剂,在马弗炉里升温至800~950 ℃条件下煅烧。利用XRD、SEM、HRTEM等分析手段研究了Al3+在煅烧过程中对TiO2晶型转变和粒子生长的影响。结果表明,不同铝盐加量以及煅烧温度对TiO2晶型转变、粒子生长以及Al3+的存在状态具有显著影响。铝盐加量较低时,Al3+以取代模式掺入TiO2晶格中,置换Ti4+,使晶胞体积变小,晶体内部键长变短,不利于原子重排和断键过程,导致晶型转变率降低。随着铝盐加量的增加,过量的Al3+在TiO2表面以Al2O3的形式存在,同时相同煅烧温度下得到的锐钛型或金红石型TiO2粒子粒径减小。
  • 图  1  金红石转化率与铝盐含量的关系

    Figure  1.  Relationship between rutile conversion and aluminum salt content

    图  2  (a) P-A-825和A-y-825 (y=0.1,0.2,0.3,0.4,0.5,1,2,3,4,5,10);(b)锐钛(101)晶面;(c) P-A-950和A-y-950 (y=0.1,0.2,0.3,0.4,0.5,1,2,3,4,5,10);(d)金红石(110)晶面的XRD谱图

    Figure  2.  XRD patterns of catalysts (a) P-A-825 and A-y-825 (y=0.1,0.2,0.3,0.4,0.5,1,2,3,4,5,10), (b) (101) face of anatase, (c) P-A-950 and A-y-950 (y=0.1,0.2,0.3,0.4,0.5,1,2,3,4,5,10) and (d) (110) face of rutile

    图  3  P-A-800、A-0.5-800、A-5-800的粒子形貌和粒径分布

    Figure  3.  Particle morphology and particle size distribution of P-A-800, A-0.5-800, A-5-800

    图  4  P-A-950、A-0.5-950、A-5-950的粒子形貌和粒径分布

    Figure  4.  Particle morphology and particle size distribution of P-A-950, A-0.5-950, A-5-950

    图  5  铝盐处理的TiO2粉末样品及其元素分布

    (a) A-0.5-950;(b) A-1-950;(c) A-5-950;(d) A-5-950

    Figure  5.  TiO2 powder sample treated with aluminum salt and its element distribution

    图  6  (a)P-A-950;(b)A-0.5-950;(c)A-1-950;(d)A-5-950的HRTEM形貌

    (a) P-A-950;(b) A-0.5-950;(c) A-1-950;(d) A-5-950

    Figure  6.  HRTEM images of (a )P-A-950, (b) A-0.5-950, (c) A-1-950 and (d) A-5-950

    表  1  TiO2晶体结构精修结果统计

    Table  1.   The data of TiO2 crystal structure refinement results

    样品名称晶胞参数晶胞体积 /nm3
    a/nmb/nmc/nm
    P-A-9500.459290.459290.295866.2410
    A-0.5-9500.459280.459280.295866.2409
    A-1-9500.459270.459270.295856.2406
    下载: 导出CSV
  • [1] Luo Wusheng, Yu Shengfei. Design of metatitanic acid calcining system based on thermal characteristics of titanium dioxide[J]. Inorganic Chemicals Industry, 2014,46(1):61−64. (罗武生, 喻胜飞. 基于二氧化钛热工特性的偏钛酸煅烧系统设计[J]. 无机盐工业, 2014,46(1):61−64.

    Luo Wusheng, Yu Shengfei. Design of metatitanic acid calcining system based on thermal characteristics of titanium dioxide[J]. Inorganic Chemicals Industry, 2014, 46(1): 61-64.
    [2] Wang Z, Chen K, Zhu J, et al. Formation mechanism of rutile in sulfate process[J]//IOP Conference Series. Materials Science and Engineering, 2019, 562: 012002.
    [3] 唐振宁. 钛白粉的生产与环境治理[M]. 北京: 化学工业出版社, 2000.

    Tang Zhenning. Production and environmental treatment of titanium dioxide[M]. Beijing: Chemical Industry Press, 2000.
    [4] Yang Qing. Effect of Al salt on morphology and pigment properties on titanium dioxide after calcination[J]. Chemical Enterprise Management, 2017,(33):85−86. (杨青. Al盐对钛白粉窑下物形貌和颜料性能的影响[J]. 化工管理, 2017,(33):85−86.

    Yang Qing. Effect of Al salt on morphology and pigment properties on titanium dioxide after calcination[J]. Chemical Enterprise Management, 2017(33): 85-86.
    [5] Gesenhues U, Rentschler T. Crystal growth and defect structure of Al3+-doped rutile[J]. Journal of Solid State Chemistry, 1999,143(2):210−218. doi: 10.1006/jssc.1998.8088
    [6] Wang Zinan, Chen Kui, Zhu Jiawen, et al. Effects of crystal seeds and salt dopants on phase transformation of TiO2 in calcination process[J]. Inorganic Chemicals Industry, 2020,52(3):45−50. (王子楠, 陈葵, 朱家文, 等. 晶种和盐处理剂对煅烧过程中二氧化钛晶型转变的影响[J]. 无机盐工业, 2020,52(3):45−50.

    Wang Zinan, Chen Kui, Zhu Jiawen, et al. Effects of crystal seeds and salt dopants on phase transformation of TiO2 in calcination process[J]. Inorganic Chemicals Industry, 2020, 52(3): 45-50.
    [7] Zhang W, Zhu Z, Cheng C Y. Literature review of titanium metallurgical processes[J]. Hydrometallurgy, 2011,108:177−188. doi: 10.1016/j.hydromet.2011.04.005
    [8] 倪月琴. 偏钛酸晶型转化的研究[D]. 天津: 天津大学, 2006.

    Ni Yueqin. Study on phase transformation of metatitanic acid[D] . Tianjin: Tianjin University, 2006.
    [9] De L S, Aguilar T, Sánchez-Coronilla A, et al. Electronic and structural properties of highly aluminum ion doped TiO2 nanoparticles: A combined experimental and theoretical study[J]. Chem Phys Chem, 2014,15(11):2267−2280. doi: 10.1002/cphc.201402071
    [10] Lee J E, Oh S, Park D. Synthesis of nano-sized Al doped TiO2 powders using thermal plasma[J]. Thin Solid Films, 2004,457(1):230−234. doi: 10.1016/j.tsf.2003.12.027
    [11] Lee H, Lee D Y, Lee M, et al. Preparation of Al-TiO2 nanotubes and their photocatalytic activities[J]. Journal of Electroceramics, 2019,42(3-4):124−128. doi: 10.1007/s10832-018-0159-5
    [12] Ishigaki T, Nakada Y, Tarutani N, et al. Enhanced visible-light photocatalytic activity of anatase-rutile mixed-phase nano-size powder given by high-temperature heat treatment[J]. Royal Society Open Science, 2020,7(1):191539. doi: 10.1098/rsos.191539
    [13] Murashkina A A, Rudakova A V, Ryabchuk V K, et al. Influence of the dopant concentration on the photoelectrochemical behavior of Al-doped TiO2[J]. Journal of Physical Chemistry C, 2018,122(14):7975−7981. doi: 10.1021/acs.jpcc.7b12840
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  33
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-04
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回