留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中空、实心电极电炉熔炼钛渣过程中电弧特性的对比研究

李孟臻 李宝宽 于洋 肖军

李孟臻, 李宝宽, 于洋, 肖军. 中空、实心电极电炉熔炼钛渣过程中电弧特性的对比研究[J]. 钢铁钒钛, 2024, 45(1): 19-27. doi: 10.7513/j.issn.1004-7638.2024.01.004
引用本文: 李孟臻, 李宝宽, 于洋, 肖军. 中空、实心电极电炉熔炼钛渣过程中电弧特性的对比研究[J]. 钢铁钒钛, 2024, 45(1): 19-27. doi: 10.7513/j.issn.1004-7638.2024.01.004
Li Mengzhen, Li Baokuan, Yu Yang, Xiao Jun. Comparative study on arc characteristics of hollow and solid electrode electric furnace melting titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 19-27. doi: 10.7513/j.issn.1004-7638.2024.01.004
Citation: Li Mengzhen, Li Baokuan, Yu Yang, Xiao Jun. Comparative study on arc characteristics of hollow and solid electrode electric furnace melting titanium slag[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 19-27. doi: 10.7513/j.issn.1004-7638.2024.01.004

中空、实心电极电炉熔炼钛渣过程中电弧特性的对比研究

doi: 10.7513/j.issn.1004-7638.2024.01.004
基金项目: 钒钛资源综合利用产业技术创新战略联盟2019年协同研发项目(电炉钛渣冶炼过程数值模拟研究,编号:FTLM2019—2019021800093);国家自然科学基金重点项目(51934002)。
详细信息
    作者简介:

    李孟臻,1995年出生,男,辽宁辽阳人,博士研究生,主要研究方向为钛渣电炉冶炼数值模拟,E-mail: limengzhenneu@163.com

    通讯作者:

    李宝宽,1963年出生,男,辽宁辽阳人,博士,教授,主要研究方向为工业电炉热工与燃烧技术,多相流与多相反应过程模拟,E-mail: libk@smm.neu.edu.cn

  • 中图分类号: TF823,TF806.6

Comparative study on arc characteristics of hollow and solid electrode electric furnace melting titanium slag

  • 摘要: 为了深入探究中空电极技术在钛渣电炉冶炼工艺中的优势所在,以25.5 MW钛渣电炉实际电极尺寸为基础,分别建立了中空和实心电极电弧的数学模型,模拟得到中空、实心电极电弧的电磁场、温度场和流场分布特性,研究了电流大小和电弧长度对熔池表面温度分布的影响规律。结果表明,电弧内电流密度、焦耳热值、速度和温度的较大值位于阴极斑点附近,中空电极是内外径中心线下方区域,实心电极是中心轴线附近区域。采用中空电极时,周围的电弧会向中轴线汇聚,该现象有利于提高电弧加热物料的效率。当电流值由34 kA增大到54 kA,两种情形下的熔池表面平均温度分别提升了708 K和109 K。当电弧长度由0.3 m缩短到0.1 m,两种情形下的熔池表面平均温度分别提升了2500 K和46 K。相比于实心电极,中空电极更适合采用大电流和短弧长的运行方式,且合理控制弧长对提高中空电极电弧加热效率的效果更显著。
  • 图  1  物理模型及网格划分

    Figure  1.  Physical model and grid division

    图  2  不同电流下中心轴线上各点模拟值与测量值对比

    Figure  2.  Comparison of simulated and measured values at various points on the central axis under different currents

    图  3  不同中心压力下模拟值与测量值对比

    Figure  3.  Comparison of simulated and measured values under different central pressures

    图  4  垂直截面上电磁场分布对比

    Figure  4.  Comparison of electromagnetic field distribution on vertical cross sections

    图  5  水平截面上电磁场分布对比

    Figure  5.  Comparison of electromagnetic field distribution on horizontal cross section

    图  6  垂直截面上流场和温度场分布对比

    Figure  6.  Comparison of flow field and temperature field distribution on a vertical cross section

    图  7  水平截面上流场和温度场分布对比

    Figure  7.  Comparison of flow field and temperature field distribution on a horizontal cross section

    图  8  各特征线上温度分布情况

    Figure  8.  Temperature distribution on each characteristic line

    图  9  不同电流下中空电极电弧温度场分布

    Figure  9.  Temperature field distribution of hollow electrode arc under different currents

    图  10  不同电流下实心电极电弧温度场分布

    Figure  10.  Temperature field distribution of solid electrode arc under different currents

    图  11  不同电流下熔池上表面平均温度对比

    Figure  11.  Comparison of average surface temperature on the molten pool under different currents

    图  12  不同电弧长度下中空电极电弧温度场分布

    Figure  12.  Temperature field distribution of hollow electrode arc under different arc lengths

    图  13  不同电弧长度下实心电极电弧温度场分布

    Figure  13.  Temperature field distribution of solid electrode arc under different arc lengths

    图  14  不同电弧长度下熔池上表面平均温度对比

    Figure  14.  Comparison of average surface temperature of the molten pool under different arc lengths

    表  1  中空电极电弧模拟边界条件

    Table  1.   Boundary conditions of the hollow electrode arc simulation

    边界温度/K压力/Pa$ \varphi $$ \vec{A} $
    $ {A}{{A}}' $1000101325$ \dfrac{\partial \varphi }{\partial z}=0 $$ \dfrac{\partial \vec{A}}{\partial n}=0 $
    $ {A}{B}/{{A}}'{{B}}' $2000$ \dfrac{\partial P}{\partial z}=0 $$ \dfrac{\partial \varphi }{\partial z}=0 $$ \dfrac{\partial \vec{A}}{\partial n}=0 $
    $ {B}{C}/{{B}}'{{C}}' $4130$ \dfrac{\partial P}{\partial z}=0 $$ \dfrac{\partial \varphi }{\partial z}=-\dfrac{{J}_{\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}}}{\sigma } $$ \dfrac{\partial \vec{A}}{\partial n}=0 $
    $ {C}{D}/{{C}}'{{D}}' $2000$ \dfrac{\partial P}{\partial z}=0 $$ \dfrac{\partial \varphi }{\partial z}=0 $$ \dfrac{\partial \vec{A}}{\partial n}=0 $
    $ {D}{E}/{{D}}'{{E}}' $1000101325$ \dfrac{\partial \varphi }{\partial z}=0 $$ \dfrac{\partial \vec{A}}{\partial n}=0 $
    $ {E}{F}/{{E}}'{{F}}' $1000101325$ \dfrac{\partial \varphi }{\partial x}=\dfrac{\partial \varphi }{\partial y}=0 $0
    $ {F}{{F}}' $1800$ \dfrac{\partial P}{\partial z}=0 $0$ \dfrac{\partial \vec{A}}{\partial n}=0 $
    下载: 导出CSV
  • [1] 杨绍利, 盛继孚. 钛铁矿熔炼钛渣与生铁技术[M]. 北京: 冶金工业出版社, 2006.

    Yang Shaoli, Sheng Jifu. Titanium slag and pig iron smelting technology of ilmenite[M]. Beijing: Metallurgical Industry Press, 2006.
    [2] Yu Jiahua, Liu Honggui. The current status and development trend of titanium ore and titanium rich materials production at home and abroad[J]. World Nonferrous Metals, 2003,(6):4−8. (余家华, 刘洪贵. 国内外钛矿和富钛料生产现状及发展趋势[J]. 世界有色金属, 2003,(6):4−8.

    Yu Jiahua, Liu Honggui. The current status and development trend of titanium ore and titanium rich materials production at home and abroad[J]. World Nonferrous Metals, 2003(6): 4-8.
    [3] Sheng Jifu. Analysis of some characteristics of titanium slag melted in DC hollow electrode electric furnace[J]. Titanium Industry Progress, 2003,21(1):27−32. (盛继孚. 直流—空心电极电炉熔炼钛渣的某些特性浅析[J]. 钛工业进展, 2003,21(1):27−32. doi: 10.3969/j.issn.1009-9964.2003.01.006

    Sheng Jifu. Analysis of some characteristics of titanium slag melted in DC hollow electrode electric furnace[J]. Titanium Industry Progress, 2003, 21(1): 27-32. doi: 10.3969/j.issn.1009-9964.2003.01.006
    [4] Mckelliget J W, Szekely J. A mathematical model of the cathode region of a high intensity carbon arc[J]. Journal of Physics D:Applied Physics, 1983,16:1007−1022. doi: 10.1088/0022-3727/16/6/010
    [5] Hsu K S, Etemadi K, Pfender E. Study of the free‐burning high‐intensity argon arc[J]. Journal of Applied Physics, 1983,54(3):1293−1301. doi: 10.1063/1.332195
    [6] Qian F, Farouk B, Mutharasan R. Modeling of fluid flow and heat transfer in the plasma region of the dc electric arc furnace[J]. Metallurgical & Materials Transactions B, 1995,26(5):1057−1067.
    [7] Bowman B. Measurements of plasma velocity distributions in free-burning DC arcs up to 2160 A[J]. Journal of Physics D Applied Physics, 1972,5(8):1422−1432. doi: 10.1088/0022-3727/5/8/309
    [8] Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes[J]. Journal of Physics D:Applied Physics, 1997,30:2033−2042. doi: 10.1088/0022-3727/30/14/011
    [9] Ramírez M, Alexis J, Trapaga G, et al. Modeling of a DC electric arc furnace—mixing in the bath[J]. ISIJ International, 2001,41(10):1146−1155. doi: 10.2355/isijinternational.41.1146
    [10] Li Heping, Chen Xi. Numerical simulation of heat transfer and flow in a free burning arc[J]. Journal of Engineering Thermophysics, 2001,22(1):78−81. (李和平, 陈熙. 自由燃烧电弧中传热与流动的数值模拟[J]. 工程热物理学报, 2001,22(1):78−81. doi: 10.3321/j.issn:0253-231X.2001.01.022

    Li Heping, Chen Xi. Numerical simulation of heat transfer and flow in a free burning arc[J]. Journal of Engineering Thermophysics, 2001, 22(1): 78-81. doi: 10.3321/j.issn:0253-231X.2001.01.022
    [11] 王丰华. 电弧炉建模研究及其应用[D]. 上海: 上海交通大学, 2006.

    Wang Fenghua. Research and application of electric arc furnace modeling[D]. Shanghai: Shanghai Jiaotong University, 2006.
    [12] 刘立超. 耦合熔池的直流电弧物理特性数值研究[D]. 沈阳: 东北大学, 2016.

    Liu Lichao. Numerical study on physical characteristics of DC arc in coupled molten pool[D]. Shenyang: Northeast University, 2016.
    [13] Reynolds Q G. Influence of the power supply on the behaviour of DC plasma arcs - a modelling study[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018,118:655−660.
    [14] Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in electric arc furnace[J]. Journal of Engineering Science, 2020,42(S1):60−67. (姚聪林, 朱红春, 姜周华, 等. 电弧炉内长电弧等离子体的数值模拟[J]. 工程科学学报, 2020,42(S1):60−67.

    Yao Conglin, Zhu Hongchun, Jiang Zhouhua, et al. Numerical simulation of long arc plasma in electric arc furnace[J]. Journal of Engineering Science, 2020, 42(S1): 60-67.
    [15] Makgoale T, Bogaers A, Zietsman J, et al. Momentum transfer from arc to slag bath in a DC ilmenite smelting furnace: A computational analysis[J]. JOM, 2021,73(9):2682−2697. doi: 10.1007/s11837-021-04792-x
    [16] Chen Y C, Ryan S, Silaen A K, et al. Numerical investigation of AC electric arc plasma heat dissipation in EAF[J]. Ironmaking & Steelmaking, 2022,49(3):255−267.
    [17] Huang P C, Pfender E. Study of a transferred-arc plasma reactor with a converging wall and flow through a hollow cathode[J]. Plasma Chemistry and Plasma Processing, 1991,11(1):129−150. doi: 10.1007/BF01447037
    [18] Tashiro C S, Tanaka M, Nakatani M, et al. Numerical analysis of energy source properties of hollow cathode arc[J]. Surface & Coatings Technology, 2007,201:5431−5434.
    [19] Chen Shujun, Sheng Shan, Jiang Fan, et al. Physical properties of negative pressure arc at the center of hollow tungsten electrode[J]. Journal of Welding, 2017,38(12):1−4. (陈树君, 盛珊, 蒋凡, 等. 空心钨极中心负压电弧的物理性能[J]. 焊接学报, 2017,38(12):1−4. doi: 10.12073/j.hjxb.20171230

    Chen Shujun, Sheng Shan, Jiang Fan, et al. Physical properties of negative pressure arc at the center of hollow tungsten electrode[J]. Journal of Welding, 2017, 38(12): 1-4. doi: 10.12073/j.hjxb.20171230
    [20] Angola A D, Colonna G, Gorse C, et al. Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range[J]. The European Physical Journal D, 2008,46(1):129−150. doi: 10.1140/epjd/e2007-00305-4
    [21] Rao Z H, Liao S M, Tsai H L. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding[J]. Journal of Applied Physics, 2010,107(4):044902. doi: 10.1063/1.3291121
    [22] Naghizadeh-Kashani Y, Cressault Y, Gleizes A. Net emission coefficient of air thermal plasmas[J]. Journal of Physics D:Applied Physics, 2002,35(22):2925−2934. doi: 10.1088/0022-3727/35/22/306
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回