留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同锻造工艺对TA15棒材组织性能影响

李晓煜 唐敏 刘昕 肖强 秦海旭

李晓煜, 唐敏, 刘昕, 肖强, 秦海旭. 不同锻造工艺对TA15棒材组织性能影响[J]. 钢铁钒钛, 2024, 45(1): 57-64. doi: 10.7513/j.issn.1004-7638.2024.01.009
引用本文: 李晓煜, 唐敏, 刘昕, 肖强, 秦海旭. 不同锻造工艺对TA15棒材组织性能影响[J]. 钢铁钒钛, 2024, 45(1): 57-64. doi: 10.7513/j.issn.1004-7638.2024.01.009
Li Xiaoyu, Tang Min, Liu Xin, Xiao Qiang, Qin Haixu. Studies on the influences of forging processes on the microstructures and properties of TA15 rods[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 57-64. doi: 10.7513/j.issn.1004-7638.2024.01.009
Citation: Li Xiaoyu, Tang Min, Liu Xin, Xiao Qiang, Qin Haixu. Studies on the influences of forging processes on the microstructures and properties of TA15 rods[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 57-64. doi: 10.7513/j.issn.1004-7638.2024.01.009

不同锻造工艺对TA15棒材组织性能影响

doi: 10.7513/j.issn.1004-7638.2024.01.009
详细信息
    作者简介:

    李晓煜,1985年出生,女,博士,高级工程师,主要从事钛合金材料研究,E-mail:lxy_rwth@163.com

  • 中图分类号: TF823

Studies on the influences of forging processes on the microstructures and properties of TA15 rods

  • 摘要: 采用自由锻和径锻工艺,分别制备出直径Ø200 mm和Ø100 mm的两支TA15钛合金锻棒,研究了锻造工艺对TA15锻棒组织和力学性能的影响。结果表明,两种TA15锻棒不同位置的金相组织有明显差异,径锻棒心部初生α相占比高,初生及次生α相均呈现不规则变形组织形貌,说明Ø100 mm锻棒中心发生变形。两支锻棒的α相含量从心部到边部逐渐减少,β转变组织含量逐渐增多。退火后径锻棒的组织内存在大量块状α相和细小再结晶晶粒,而自由锻锻棒组织无明显变化。经过径锻变形后,锻棒的边部室温抗拉强度、面缩和冲击性能提升。细长的片层状组织提供了更多α/β相界面,促进了高温扩散,使得自由锻锻棒的高温力学性能低于径锻棒。
  • 图  1  TA15钛合金性质

    Figure  1.  Diagram of the thermodynamic properties of TA15

    图  2  两种锻造工艺下TA15锻棒不同位置的横向显微组织(未退火)

    Ø200 mm:(a)中心;(b)D/4;(c)边部;Ø100 mm:(d)中心;(e)D/4;(f)边部

    Figure  2.  Microstructures of TA15 rods at different positions on the cross sections by two forging processes (without annealing)

    图  3  两种锻造工艺下TA15锻棒不同位置的纵向显微组织(未退火)

    Ø200 mm:(a)中心;(b)D/4;(c)边部;Ø100 mm:(d)中心;(e)D/4;(f)边部

    Figure  3.  Microstructures of TA15 rods at different positions in the longitudinal direction by two forging processes (without annealing)

    图  4  两种锻造工艺下TA15锻棒不同位置的纵向显微组织(退火后)

    Ø200 mm:(a)中心;(b)D/4;(c)边部;Ø100 mm:(d)中心;(e)D/4;(f)边部

    Figure  4.  Microstructures of TA15 rods at different positions in the longitudinal direction by two forging processes (after annealing)

    图  5  TA15锻棒不同位置的常温拉伸性能

    (a)屈服强度;(b)抗拉强度;(c)延伸率;(d)断面收缩率

    Figure  5.  Tensile properties of TA15 rods at different positions

    图  6  TA15锻棒高温拉伸性能

    (a)拉伸强度;(b)韧塑性

    Figure  6.  High-temperature tensile properties of TA15

    图  7  TA15高温拉伸纵向金相组织

    (a)Ø200 mm, 未变形区;(b)Ø100 mm, 未变形区;(c)Ø200 mm, 断口端;(d)Ø100 mm, 断口端

    Figure  7.  Metallographical microstructures of TA15 after high-temperature tensile test

    图  8  TA15高温拉伸断口附近微观组织

    Figure  8.  Microstructures of the near fracture region of TA15 after high-temperature tensile test

    (a)Ø200 mm; (b) Ø100 mm

    图  9  TA15高温拉伸断口形貌

    Figure  9.  Fractography of TA15 after high-temperature tensile test

    (a)Ø200 mm; (b)Ø100 mm

    图  10  TA15高温持久断口形貌

    Figure  10.  Fractography of TA15 after high temperature duration tests

    (a)Ø200 mm;(b)Ø100 mm

    表  1  TA15钛合金铸锭化学成分

    Table  1.   Chemical composition of TA15 ingot %

    AlMoVZrOFeTi
    6.501.722.412.030.120.21Bal.
    下载: 导出CSV

    表  2  TA15锻棒高温持久性能

    Table  2.   High-temperature durability of TA15 rods

    锻棒尺寸
    /mm
    高温持久(500 ℃,470 MPa)
    /h
    Ø200164.5,199.6
    Ø100218.8,255.4
    下载: 导出CSV
  • [1] Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020,39(7-8):527−534. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020,39(7-8):527−534.

    Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Materials China, 2020, 39(7-8): 527-534.
    [2] Wu Bin, Tang Dingcheng, He Xiaofan, et al. Fatigue bahavior of laser metal deposition TA15 titanium alloy universal beam[J]. Chinese Journal of Rare Metals, 2022,46(5):545−553. (吴斌, 唐鼎承, 贺小帆, 等. 激光金属沉积TA15钛合金工字梁疲劳性能研究[J]. 稀有金属, 2022,46(5):545−553.

    Wu Bin, Tang Dingcheng, He Xiaofan, et al. Fatigue bahavior of laser metal deposition TA15 titanium alloy universal beam [J]. Chinese Journal of Rare Metals, 2022, 46(5) : 545-553.
    [3] Cao Jingxia, Fang Bo, Huang Xu, et al. Effects of microstructure on properties of TA15 titanium alloy[J]. Chinese Journal of Rare Metals, 2004,28(2):362−364. (曹京霞, 方波, 黄旭, 等. 微观组织对TA15钛合金力学性能的影响[J]. 稀有金属, 2004,28(2):362−364.

    Cao Jingxia, Fang Bo, Huang Xu, et al. Effects of microstructure on properties of TA15 titanium alloy [J]. Chinese Journal of Rare Metals, 2004, 28(2): 362-364.
    [4] He Fei, Chen Haifeng, Wang Yuhui. Effect of microstructure on high temperature tensile properties of TA15 titanium alloy[J]. Journal of Materials Engineering, 2012,(2):13−15. (贺飞, 陈海峰, 王玉会. 显微组织对TA15合金高温拉伸性能的影响[J]. 材料工程, 2012,(2):13−15.

    He Fei, Chen Haifeng, Wang Yuhui. Effect of microstructure on high temperature tensile properties of TA15 titanium alloy [J]. Journal of Materials Engineering, 2012, (2): 13-15.
    [5] 郭威威. TA15钛合金等温多向锻造组织演化行为及力学性能研究[D]. 合肥: 合肥工业大学, 2019.

    Guo Weiwei. Microstructure evolution behaviors and mechanical properties of TA15 alloy by isothermal multi-directional forging [D]. Hefei: Hefei University of Technology, 2019.
    [6] Xie Li, Yu Zhongliang, Wang Yuan, et al. Effect of forging process on microstructure and mechanical properties of lager diameter TA15 titanium alloy bar[J]. Heat Treatment of Metals, 2016,41(2):181−182. (谢力, 虞忠良, 王媛, 等. 锻造工艺对TA15钛合金大直径棒材的组织与性能影响[J]. 金属热处理, 2016,41(2):181−182.

    Xie Li, Yu Zhonglang, Wang Yuan, et al. Effect of forging process on microstructure and mechanical properties of lager diameter TA15 titanium alloy bar [J]. Heat Treatment of Metals, 2016, 41(2): 181-182.
    [7] Wang Fuqiang, Yang Lixin, Wang Deyong, et al. Research on technology and microstructure and properties of TA15 titanium alloy large-size forging billet[J]. Hot Working Technology, 2020,49(13):19−23. (王富强, 杨立新, 王德勇, 等. TA15钛合金大型锻坯工艺及组织与性能研究[J]. 热加工工艺, 2020,49(13):19−23.

    Wang Fuqiang, Yang Lixin, Wang Deyong, et al. Research on technology and microstructure and properties of TA15 titanium alloy large-size forging billet [J]. Hot Working Technology, 2020, 49(13): 19-23.
    [8] Min Xinhua, Ji Renfeng. Effect of forging process on microstructure and mechanical properties of TA15 titanium alloy slab[J]. Titanium Industry Process, 2016,33(6):36−39. (闵新华, 纪仁峰. 锻造工艺对TA15钛合金扁坯组织和力学性能的影响[J]. 钛工业进展, 2016,33(6):36−39.

    Min Xinhua, Ji Renfeng. Effect of forging process on microstructure and mechanical properties of TA15 titanium alloy slab[J]. Titanium Industry Process, 2016, 33(6): 36-39.
    [9] Wang Zhe, He Jian, Zhang Shuai, et al. Influence of forging equipment on microstructure and mechanical properties of TA15 titanium alloy[J]. Iron Steel Vanadium Titanium, 2022,43(1):80−84. (王哲, 何健, 张帅, 等. 锻造设备对TA15钛合金显微组织及性能的影响研究[J]. 钢铁钒钛, 2022,43(1):80−84.

    Wang Zhe, He Jian, Zhang Shuai, et al. Influence of forging equipment on microstructure and mechanical properties of TA15 titanium alloy[J]. Iron Steel Vanadium Titanium, 2022, 43(1): 80-84.
    [10] Zuo Zheng, Zou Junjie, Jiang Jiajun, et al. Dynamic globularization behavior of lamellar α phase in TC21 titanium alloy during hot deformation[J]. Journal of Netshape Forming Engineering, 2023,15(2):60−67. (左正, 邹俊杰, 蒋佳君, 等. TC21钛合金热变形过程中片层α相动态球化行为研究[J]. 精密成形工程, 2023,15(2):60−67.

    Zuo Zheng, Zou Junjie, Jiang Jiajun, et al. Dynamic globularization behavior of lamellar α phase in TC21 titanium alloy during hot deformation [J]. Journal of Netshape Forming Engineering, 2023, 15(2) : 60-67.
    [11] 董显娟. 片状组织TA15钛合金α+β相区塑性变形特性及等轴化行为研究[D]. 南京: 南京航空航天大学, 2011.

    Dong Xianjuan. Research on plastic deformation characterisitics and globularization behavior of TA15 titanium alloy with lamellar microstructure in alpha and beta phase field[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [12] Li Ping, Gan Guoqiang, Xue Kemin. Modeling of phase transformation and DRX in TA15 alloy during the isothermal hot compression[J]. Rare Metal Materials and Engineering, 2012,41(S2):343−347. (李萍, 甘国强, 薛克敏. TA15合金等温热压缩过程中相变和再结晶模型的建立(英文)[J]. 稀有金属材料与工程, 2012,41(S2):343−347.

    Li Ping, Gan Guoqiang, Xue Kemin. Modeling of phase transformation and DRX in TA15 alloy during the isothermal hot compression[J]. Rare Metal Materials and Engineering, 2012, 41(S2): 343-347.
    [13] Han Yunfei, Yuan Bingbing, Sun Bing, et al. Microstructure and properties of ZTA15 titanium alloy in different states[J]. Foundry Technology, 2022,43(8):694−697. (韩云飞, 袁兵兵, 孙冰, 等. ZTA15钛合金在不同状态下的组织和性能[J]. 铸造技术, 2022,43(8):694−697.

    Han Yunfei, Yuan Bingbing, Sun Bing, et al. Microstructure and properties of ZTA 15 titanium alloy in different states[J]. Foundry Technology, 2022, 43(8): 694-697.
    [14] Lu Jing, Wang Yuhui, Zhang Wangfeng. Effect of microstructure on tensile properties of near-alpha TA15 titanium alloy[J]. Heat Treatment of Metals, 2011,36(6):25−28. (鹿靖, 王玉会, 张旺峰. 组织形态对近α型TA15钛合金拉伸性能的影响[J]. 金属热处理, 2011,36(6):25−28.

    Lu Jing, Wang Yuhui, Zhang Wangfeng. Effect of microstructure on tensile properties of near-alpha TA15 titanium alloy[J]. Heat Treatment of Metals, 2011, 36(6): 25-28.
    [15] Wang Zhe, Ran Xing, Liu Chengcheng, et al. Influence of forging temperature on microstructure and tensile strength aeolotropy of TA15 titanium alloy[J]. Materials for Mechanical Engineering, 2022,46(7):6−10. (王哲, 冉兴, 刘程程, 等. 锻造温度对TA15钛合金显微组织及抗拉强度各向异性的影响[J]. 机械工程材料, 2022,46(7):6−10.

    Wang Zhe, Ran Xing, Liu Chengcheng, et al. Influence of forging temperature on microstructure and tensile strength aeolotropy of TA15 titanium alloy[J]. Materials for Mechanical Engineering, 2022, 46(7): 6-10.
    [16] Wang Yun, Luo Dengchao, Wang Sha, et al. Effects of heat treatment on mechanical properties and microstructure of Ti80 cold-rolled tubes[J]. Hot Working Technology, 2019,48(10):200−202. (王云, 罗登超, 王莎, 等. 热处理对Ti80冷轧管材力学性能和组织的影响[J]. 热加工工艺, 2019,48(10):200−202.

    Wang Yun, Luo Dengchao, Wang Sha, et al. Effects of heat treatment on mechanical properties and microstructure of Ti80 cold-rolled tubes[J]. Hot Working Technology, 2019, 48(10): 200-202.
    [17] Luo Dengchao, Wang Yun, Li Wei. Manufacture of TA15 titanium alloy pipes by different processes[J]. Forging & Stamping Technology, 2022,47(8):118−122. (罗登超, 王云, 李维. 不同工艺制备TA15钛合金管材[J]. 锻压技术, 2022,47(8):118−122.

    Luo Dengchao, Wang Yun, Li Wei. Manufacture of TA15 titanium alloy pipes by different processes[J]. Forging & Stamping Technology, 2022, 47(8): 118-122.
    [18] Zhang Mingyu, Yun Xinbing, Fu Hongwang. Effect of different heat treatment process on microstructure and properties of TC10 titanium alloy[J]. Journal of Plasticity Engineering, 2021,28(12):237−245. (张明玉, 运新兵, 伏洪旺. 不同热处理工艺对TC10钛合金组织及性能的影响[J]. 塑性工程学报, 2021,28(12):237−245.

    Zhang Minyu, Yun Xinbing, Fu Hongwang. Effect of different heat treatment process on microstructure and properties of TC10 titanium alloy [J]. Journal of Plasticity Engineering, 2021, 28(12): 237-245.
    [19] Meng Yan, Huang Dong, Feng Zhenyong, et al. Finite element modeling and study on the propagation rules of microcracks in TA15 titanium alloy with different microstructures during isothermal tension[J]. Journal of Plasticity Engineering, 2017,24(2):160−167. (孟岩, 黄栋, 冯振勇, 等. 不同组织TA15钛合金等温拉伸微裂纹扩展规律的有限元建模研究[J]. 塑性工程学报, 2017,24(2):160−167.

    Meng Yan, Huang Dong, Feng Zhenyong, et al. Finite element modeling and study on the propagation rules of microcracks in TA15 titanium alloy with different microstructures during isothermal tension[J]. Journal of Plasticity Engineering, 2017, 24(2): 160-167.
    [20] Zhang Qi, Yang Na, Zhang Mingyu, et al. The effect of forging process on the structrure and properties of Ti-662 titanium alloy bars[J]. Metal Working, 2023,(5):104−107. (张起, 杨娜, 张明玉, 等. 锻造工艺对Ti-662钛合金棒材组织和性能的影响[J]. 金属加工(热加工), 2023,(5):104−107.

    Zhang Qi, Yang Na, Yang Mingyu, et al. The effect of forging process on the structrure and properties of Ti-662 titanium alloy bars[J]. Metal Working, 2023 (5): 104-107.
    [21] Sha Aixue, Li Xingwu, Wang Qingru, et al. Influence of hot deformation temperature on microstructure and mechanical properties of TC18 alloy[J]. The Chinese Journal of Nonferrous Metals, 2005,15(8):1167−1172. (沙爱学, 李兴无, 王庆如, 等. 热变形温度对TC18钛合金显微组织和力学性能的影响[J]. 中国有色金属学报, 2005,15(8):1167−1172.

    Sha Aixue, Li Xingwu, Wang Qingru, et al. Influence of hot deformation temperature on microstructure and mechanical properties of TC18 alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(8): 1167-1172.
    [22] Yao Zekun, Guo Hongzhen, Su Zuwu, et al. Effect of microstructure and recrystallization and mechanical properties of two phase (α+β) Ti alloy[J]. Rare Metal Materials and Engineering, 2000,29(5):340−343. (姚泽坤, 郭鸿镇, 苏祖武, 等. 热力参数对α+β两相钛合金再结晶百分数和力学性能的影响[J]. 稀有金属材料与工程, 2000,29(5):340−343.

    Yao Zekun, Guo Hongzhen, Su Zuwu, et al. Effect of microstructure and recrystallization and mechanical properties of two phase (α+β) Ti alloy[J]. Rare Metal Materials and Engineering, 2000, 29(5): 340-343.
    [23] Hou Yanrong, Lai Yunjin, Du Yuxuan, et al. Effect of heat treatment process on impact property of TA15 alloy[J]. Material and Heat Treatment, 2011,40(2):182−183. (侯艳荣, 赖运金, 杜予晅, 等. 热处理对TA15钛合金棒材冲击性能的影响[J]. 热加工工艺, 2011,40(2):182−183.

    Hou Yanrong, Lai Yunjin, Du Yuxuan, et al. Effect of heat treatment process on impact property of TA15 alloy[J]. Material and Heat Treatment, 2011, 40(2): 182-183.
    [24] Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. High temperature mechanical properties of near α, (α+β) and near β type titanium alloy[J]. Heat Treatment of Metals, 2022,47(11):199−205. (李明兵, 王新南, 商国强, 等. 近α型、(α+β)型和近β型钛合金的高温力学性能[J]. 金属热处理, 2022,47(11):199−205.

    Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. High temperature mechanical properties of near α, (α+β) and near β type titanium alloy[J]. Heat Treatment of Metals, 2022, 47(11): 199-205.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  13
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回