留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同热处理条件下Ti-1023钛合金的绝热剪切敏感性

郭文静 张继林 贾海深 易湘斌 罗文翠

郭文静, 张继林, 贾海深, 易湘斌, 罗文翠. 不同热处理条件下Ti-1023钛合金的绝热剪切敏感性[J]. 钢铁钒钛, 2024, 45(1): 71-77. doi: 10.7513/j.issn.1004-7638.2024.01.011
引用本文: 郭文静, 张继林, 贾海深, 易湘斌, 罗文翠. 不同热处理条件下Ti-1023钛合金的绝热剪切敏感性[J]. 钢铁钒钛, 2024, 45(1): 71-77. doi: 10.7513/j.issn.1004-7638.2024.01.011
Guo Wenjing, Zhang Jilin, Jia Haishen, Yi Xiangbin, Luo Wencui. Adiabatic shear sensitivity performance of Ti-1023 alloys at different heat treatment regimes[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 71-77. doi: 10.7513/j.issn.1004-7638.2024.01.011
Citation: Guo Wenjing, Zhang Jilin, Jia Haishen, Yi Xiangbin, Luo Wencui. Adiabatic shear sensitivity performance of Ti-1023 alloys at different heat treatment regimes[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 71-77. doi: 10.7513/j.issn.1004-7638.2024.01.011

不同热处理条件下Ti-1023钛合金的绝热剪切敏感性

doi: 10.7513/j.issn.1004-7638.2024.01.011
基金项目: 甘肃省重点研发计划项目(22YF7GA132);甘肃省重点人才项目(甘组通字[2022]77号);甘肃省高等学校创新基金项目(2021B-319);甘肃省产业支撑项目(2021CYZC-52)。
详细信息
    作者简介:

    郭文静,1984年出生,女,甘肃天水人,硕士,讲师,主要从事材料力学性能、切削性能及摩檫学领域研究,E-mail:wenjing0622@163.com

    通讯作者:

    张继林,1987年出生,男,甘肃民乐人,硕士,副教授,主要从事材料的动态力学性能、材料疲劳性能以及切削性能研究,E-mail:zjl-0111@163.com

  • 中图分类号: TF823,TG146

Adiabatic shear sensitivity performance of Ti-1023 alloys at different heat treatment regimes

  • 摘要: 利用Hopkinson 压杆试验系统对圆柱形试样进行室温动态压缩冲击试验,研究不同热处理制度下Ti-1023钛合金的微观组织、绝热剪切带的形成特征。结果表明,相变点以上固溶处理使Ti-1023合金组织晶粒尺寸增大,β晶界处析出细针状α相;相变点以下的固溶时效使晶粒内部析出大量球状α相,相变点以下的固溶双重时效处理的组织晶粒更为细小均匀。在较高应变率加载条件下,不同组织均表现出明显的应变率增强和增塑效应,具有明显的热塑性失稳特征。相变点以上固溶时效组织动态强度高,但塑性差,绝热剪切敏感性最大;相变点以下固溶单重时效组织最不易发生绝热剪切,但强度低;固溶双重时效组织比固溶单重时效组织的动态强度高,塑性较好,具有最好的抗冲击承载能力。
  • 图  1  三种热处理制度下Ti-1023钛合金组织的显微形貌

    Figure  1.  Microstructure of Ti-1023 titanium alloy under three heat treatment systems

    (a)Z1;(b)Z2;(c)Z3

    图  2  Ti-1023钛合金三种组织的应力-应变曲线

    Figure  2.  Stress-strain curves of three microstructures of titanium alloy

    图  3  Ti-1023钛合金不同组织在相同应变率下动态压缩应力-时间曲线

    Figure  3.  Dynamic compressive stress-time curves of Ti-1023 alloy with different structures under the same strain rate

    图  4  Ti-1023钛合金双态组织绝热剪切带(Z1应变率3000 s−1

    Figure  4.  Adiabatic shear band of Ti-1023 alloy duplex microstructure(Z1)at 3000 s−1

    图  5  Ti-1023钛合金等轴组织绝热剪切带(Z2应变率2000 s−1

    Figure  5.  Adiabatic shear band of Ti-1023 alloy equiaxed microstructure(Z2)at 2000 s−1

    图  6  Ti-1023钛合金双态组织绝热剪切带(Z3应变率2000 s−1

    Figure  6.  Adiabatic shear band of Ti-1023 alloy duplex microstructure(Z3)at 2000 s−1

    图  7  Ti-1023钛合金三种组织剪切断口形貌(应变率4000 s−1

    (a)Z1;(b)Z2;(c)Z3

    Figure  7.  Three kinds of structural shear fracture morphology of Ti-1023 alloy at the strain rate of 4000 s–1

    表  1  Ti-1023钛合金化学成分

    Table  1.   Chemical composition of Ti-1023 alloy %

    HONFeAlVTi
    0.010.030.031.932.9310.13余量
    下载: 导出CSV
  • [1] Zhu Zhishou. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeron Materials, 2014,34(4):44−50. (朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014,34(4):44−50.

    Zhu Zhishou. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeron Materials, 2014(4): 44-50
    [2] Ye Yong, Wang Jinyan. An overview on application status and processing technology development of titanium alloy[J]. Materials Review, 2012,26(S2):360−363. (叶勇, 王金彦. 钛合金的应用现状及加工技术发展概况[J]. 材料导报, 2012,26(S2):360−363.

    Ye Yong, Wang Jinyan. An overview on application status and processing technology development of titanium Alloy[J]. Materials Review, 2012, 26 (S1): 360-363
    [3] Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Materials, 2011,35(4):575−580. (杨冬雨, 付艳艳, 惠松骁, 等. 高强高韧钛合金研究与应用进展[J]. 稀有金属, 2011,35(4):575−580. doi: 10.3969/j.issn.0258-7076.2011.04.017

    Yang Dongyu, Fu Yanyan, Hui Songxiao, et al. Research and application of high strength and high toughness titanium alloys[J]. Chinese Journal of Rare Materials, 2011, 35(4): 575-580 doi: 10.3969/j.issn.0258-7076.2011.04.017
    [4] Raghuna S L, Stapleton A M, Dashwood R J, et al. Micromechanics of Ti–10V–2Fe–3Al: In situ synchrotron characterisation and modelling[J]. Acta Materialia, 2007,55:6861−6872. doi: 10.1016/j.actamat.2007.08.049
    [5] Jim Williams. Thermo-mechanical processing of high-performance Ti alloys: recent progress and future needs[J]. Journal of Materials Processing Technology, 2001,117(3):370−373. doi: 10.1016/S0924-0136(01)00803-2
    [6] Welk Brian A. Microstructural and property relationships in β-titanium alloy Ti-5553[D]. US: Ohio State University, 2010.
    [7] Qiu Wei, Lu Shiqiang, Ouyang Delai. Investigation on the hot temperature deformation behavior and microstructure evolution of forged titanium alloy TB6[J]. Journal of Plasticity Engineering, 2010,17(3):38−43. (邱伟, 鲁世强, 欧阳德来, 等. 锻态TB6钛合金热变形行为及组织演变[J]. 塑性工程学报, 2010,17(3):38−43. doi: 10.3969/j.issn.1007-2012.2010.03.008

    Qu Wei, Lu shiqiang, Ouyang Delai. Investigation on the hot temperature deformation behavior and microstructure evolution of forged titanium alloyTB6[J]. Journal of Plasticity Engineering, 2010, 17(3): 38-43 doi: 10.3969/j.issn.1007-2012.2010.03.008
    [8] Ouyang Delai, Lu Shiqiang, Cui Xia, et al. Transformation of deformation-induced martensite in TB6 titanium alloy[J]. Chinese Journal of Nonferrous Metals, 2010,20(12):2307−2312. (欧阳德来, 鲁世强, 崔霞, 等. TB6钛合金热变形诱导马氏体转变[J]. 中国有色金属学报, 2010,20(12):2307−2312.

    Ouyang Delai, Lu Shiqiang, Cui Xia, et al. Transformation of deformation-induced martensite in TB6 titanium alloy[J]. Chinese Journal of Nonferrous Metals, 2010, 20(12): 2307-2312
    [9] Bao Ruqiang, Huang Xu, Huang Lijun. Investigation on hot processes of Ti-10V-2Fe-3Al alloy[J]. Chinese Journal of Rare Materials, 2005,29(2):214−218. (鲍如强, 黄旭, 黄利军. Ti-10V-2Fe-3Al合金热工艺的研究[J]. 稀有金属, 2005,29(2):214−218.

    Bao Ruqiang, Huang Xu, Huang Lijun. Investigation on hot processes of Ti-10 V-2 Fe-3 Al alloy[J]. Chinese Journal of Rare Materials, 2005, 29(2): 214-218
    [10] Zhang Wei, Wang Kaixuan, Wang Tao, et al. Study on microstructure and property of Ti-1023 titanium alloy bar[J]. Chinese Hot Working Technology, 2013,42(17):117−119. (张维, 王凯旋, 王涛, 等. Ti-1023钛合金棒材组织和性能的研究[J]. 热加工工艺, 2013,42(17):117−119.

    Zhang Wei, Wang Kaixuan, Wang Tao, et al. Study on microstructure and property of Ti-1023 titanium alloy bar[J]. Chinese Hot Working Technology, 2013, 42(17): 117-119
    [11] Wang Xiaoyan, Liu Jianrong, Lei Jiafeng, et al. Effects of primary and secondary α phase on tensile property and fracture toughness of Ti-1023 alloy[J]. Acta Metallurgica Sinica, 2007,43(11):1129−1137. (王晓燕, 刘建荣, 雷家峰, 等. 初生及次生α相对Ti-1023合金拉伸性能和断裂韧性的影响[J]. 金属学报, 2007,43(11):1129−1137.

    Wang Xiaoyan, Liu Jianrong, Lei Jiafeng, et al. Effects of primary and secondary α phase on tensile property and fracture toughness of Ti-1023 alloy[J]. Acta Metallurgica Sinica, 2007, 43(11): 1129-1137
    [12] Wang Ding, Wang Lin, Dai Huaxiang, et al. Dynamic properties and adiabatic shear sensitivity of TB2 titanium alloy[J]. Ordnance Material Science and Engineering, 2016,39(5):100−103. (王丁, 王琳, 代华湘, 等. TB2钛合金动态力学性能及绝热剪切敏感性研究[J]. 兵器材料科学与工程, 2016,39(5):100−103.

    Wang Ding, Wang Lin, Dai Huaxiang, et al. Dynamic properties and adiabatic shear sensitivity of TB2 titanium alloy[J]. Ordnance Material Science and Engineering, 2016, 39(5): 100-103
    [13] He J, Li D, Chen H, et al. Microstructures and mechanical properties of TB2 forgings[J]. Rare Metal Materials and Engineering, 2006,35(8):152−155.
    [14] You Zhenping, Ye Wenjun, Hui Songxiao, et al. Study on dynamic mechanical properties and adiabatic shearing of TB10 titanium alloy[J]. Chinese Journal of Rare Materials, 2008,32(6):799−802. (尤振平, 叶文君, 惠松骁, 等. TB10钛合金的动态力学性能及绝热剪切分析[J]. 稀有金属, 2008,32(6):799−802. doi: 10.3969/j.issn.0258-7076.2008.06.024

    You Zhenpin, Ye Wenjun, Hui Songxiao, et al. Study on dynamic mechanical properties and adiabatic shearing of TB10 titanium alloy[J]. Chinese Journal of Rare Materials, 2008, 32(6): 799-802 doi: 10.3969/j.issn.0258-7076.2008.06.024
    [15] 常辉. Ti-B19合金的固态相变动力学及其组织演变规律[D]. 西安: 西北工业大学, 2006.

    Chang Hui. Solid phase transformation kinetics and microstructure evolutions of Ti-B19 alloy[D]. Xi’an: Northwestern Polytechnical University, 2006.
    [16] Ma Quan, Guo Aihong, Zhou Lian. Microstructure evolution and tensile properties of Ti1023 titanium alloy during aging[J]. The Chinese Journal of Nonferrous Metals, 2019,29(6):1219−1225. (马权, 郭爱红, 周廉. Ti1023钛合金在时效过程中的组织演化和拉伸性能[J]. 中国有色金属学报, 2019,29(6):1219−1225. doi: 10.19476/j.ysxb.1004.0609.2019.06.10

    Ma Quan, Guo Aihong, Zhou Lian. Microstructure evolution and tensile properties of Ti1023 titanium alloy during aging[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1219-1225 doi: 10.19476/j.ysxb.1004.0609.2019.06.10
    [17] Ivasishin O M, Markovsky R, Semiatin S L, et al. Aging response of coarse- and fine-grained β titanium alloys[J]. Materials Science & Engineering A, 2005,405(1/2):296−305.
    [18] Shang Guoqiang, Kou Hongchao, Fei Yue, et al. Influence of aging processing on microstructure and mechanical properties of Ti-10V-2Fe-3Al alloy[J]. Rare Metal Materials & Engineering, 2010,39(6):1061−1065. (商国强, 寇宏超, 费跃, 等. 时效工艺对Ti-10V-2Fe-3Al合金显微组织和力学性能的影响[J]. 稀有金属材料与工程, 2010,39(6):1061−1065.

    Shang Guoqiang, Kou Hongchao, Fei Yue, et al. Influence of aging processing on microstructure and mechanical properties of Ti-10 V-2 Fe-3 Al alloy[J]. Rare Metal Materials & Engineering, 2010, 39(6): 1061-1065
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回