留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱浸和污泥强化对钢渣陶粒除磷效果的影响

唐婧 罗胜元

Bai Caiyun, Zhang Chongmiao. Study on preparation of modified steel slag ceramsite and its phosphorus removal performance[J]. Technology of Water Treatment, 2020, 46(7): 63−66,71. doi: 10.7513/j.issn.1004-7638.2024.01.015
引用本文: Bai Caiyun, Zhang Chongmiao. Study on preparation of modified steel slag ceramsite and its phosphorus removal performance[J]. Technology of Water Treatment, 2020, 467): 6366,71. doi: 10.7513/j.issn.1004-7638.2024.01.015
Tang Jing, Luo Shengyuan. Effect of alkali leaching and sludge strengthening on phosphorus removal of steel slag ceramics[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 96-103. doi: 10.7513/j.issn.1004-7638.2024.01.015
Citation: Tang Jing, Luo Shengyuan. Effect of alkali leaching and sludge strengthening on phosphorus removal of steel slag ceramics[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 96-103. doi: 10.7513/j.issn.1004-7638.2024.01.015

碱浸和污泥强化对钢渣陶粒除磷效果的影响

doi: 10.7513/j.issn.1004-7638.2024.01.015
基金项目: 辽宁省教育厅重点攻关项目(LJKZZ20220081)。
详细信息
    作者简介:

    唐婧,1980年出生,女,黑龙江哈尔滨市人,博士,教授,通讯作者,研究方向为污水处理,E-mail:fairy_ben@163.com

    通讯作者:

    唐婧,1980年出生,女,黑龙江哈尔滨市人,博士,教授,通讯作者,研究方向为污水处理,E-mail:fairy_ben@163.com

  • 中图分类号: X757,X703

Effect of alkali leaching and sludge strengthening on phosphorus removal of steel slag ceramics

  • 摘要: 为提高钢渣除磷效果,采用碱浸预处理,并添加污泥强化制备碱浸钢渣-蒙脱土-污泥复合钢渣陶粒,与钢渣-蒙脱土-可溶性淀粉复合陶粒进行对比研究,探讨强化后钢渣陶粒的除磷性能和除磷机理,考察含磷溶液中磷的去除。结果表明,两种钢渣陶粒的最大除磷率均可达到93%,磷酸盐浓度为1 mg/L时,碱浸-污泥强化钢渣陶粒的最佳投加量为0.5 g,显著低于未强化钢渣陶粒(1 g)。扫描电镜显示碱浸-污泥强化钢渣陶粒孔隙更为密集。X射线衍射表明两种陶粒内含多种金属盐,可与水样中磷酸根离子发生反应将其去除。两种陶粒对Langmuir吸附等温方程拟合度最高,碱浸-污泥强化钢渣陶粒吸附饱和时, 最大吸附量(39.18 mg/g)高于未强化钢渣陶粒(19.18 mg/g) 。两种陶粒对准二级动力学模型的拟合度高于准一级动力学模型,表明两种陶粒对磷吸附属于单分子层吸附,以化学吸附为主。
  • 图  1  不同陶粒投加量对除磷效果的影响

    Figure  1.  Effect of ceramite dosage on phosphorus removal

    图  2  初始pH对两种复合陶粒除磷效果的影响

    Figure  2.  Effect of initial pH on phosphorus removal for two kinds of composite ceramics

    图  3  吸附时间对陶粒除磷性能的影响

    Figure  3.  Influence of adsorption time on phosphorus removal rate for ceramides

    图  4  不同浓度阴离子对不同复合陶粒除磷效果的影响

    (a)钢渣-蒙脱土-可溶性淀粉复合陶粒;(b)碱浸钢渣-蒙脱土-污泥复合陶粒

    Figure  4.  Influence of different concentrations of anions on phosphorus removal for different composite ceramides

    图  5  钢渣-蒙脱土-可溶性淀粉复合陶粒(a)和碱浸钢渣-蒙脱土-污泥复合陶粒(b)吸附前后XRD分析

    Figure  5.  XRD analysis of steel slag-montmorillonite-soluble starch composite ceramide (a) and alkali impregnated steel slag-montmorillonite-sludge composite ceramide (b) before and after adsorption

    图  6  钢渣-蒙脱土-可溶性淀粉复合陶粒吸附前(a1)后(a2)和碱浸钢渣-蒙脱土-污泥复合陶粒吸附前(b1)后(b2)扫描电镜

    Figure  6.  SEM images of steel slag-montmorillonite-soluble starch composite ceramsite before (a1) and after (a2) and alkali-immersed steel slag-montmorillonite-sludge composite ceramsite before (b1) and after (b2) adsorption

    图  7  磷平衡浓度-平衡吸附量趋势

    Figure  7.  Trend diagram of phosphorus equilibrium concentration-equilibrium adsorption capacity

    图  8  两种陶粒吸附时长-吸附量趋势

    Figure  8.  Trend diagram of adsorption duration and adsorption capacity of two kinds of ceramides

    表  1  两种钢渣陶粒的等温吸附方程拟合结果与相关参数

    Table  1.   Isothermal adsorption equation fitting results and related parameters of two kinds of steel slag ceramides

    材料温度/ ℃Langmuir模型Freundlich模型
    Qmax/
    (L·mg−1)
    $ {\mathrm{k}}_{\mathrm{L}} $/
    (L· mg-1)
    R2kF/
    (mg1-n·g−1·L-n)
    $ -\dfrac{1}{\mathrm{n}} $R2
    钢渣-蒙脱土-可溶性淀粉复合陶粒2019.180.400.9845.07−0.740.961
    碱浸钢渣-蒙脱土-污泥复合陶粒2039.180.200.9876.31−0.810.983
    下载: 导出CSV

    表  2  两种陶粒的动力学吸附方程拟合结果与相关参数

    Table  2.   Fitting results of kinetic adsorption equations and related parameters of the two ceramides

    材料准一级动力学模型准二级动力学模型
    Qe/
    (mg·g−1)
    k1 /min−1R2Qe/
    (mg·g−1)
    k2/[mg·(g·min)−1]R2
    钢渣-蒙脱土-可溶性淀粉复合陶粒0.0860.0650.9840.1080.6150.994
    碱浸钢渣-蒙脱土-污泥复合陶粒0.110.130.9790.1011.2060.994
    下载: 导出CSV
  • [1] Bai Caiyun, Zhang Chongmiao. Study on preparation of modified steel slag ceramsite and its phosphorus removal performance[J]. Technology of Water Treatment, 2020,46(7):63−66,71. (白彩云, 张崇淼. 改性钢渣陶粒的制备及其除磷性能研究[J]. 水处理技术, 2020,46(7):63−66,71.

    Bai Caiyun, Zhang Chongmiao. Study on preparation of modified steel slag ceramsite and its phosphorus removal performance[J]. Technology of Water Treatment, 2020, 467): 6366,71.
    [2] Akindolie M S, Choi H J. Fe12LaO19 fabricated biochar for removal of phosphorus in water and exploration of its adsorption mechanism[J]. Journal of Environmental Management, 2023,329:117053. doi: 10.1016/j.jenvman.2022.117053
    [3] Li J, Huang H, Yu W, et al. A novel lanthanum carbonate for low-level phosphorus removal: Adsorption performance and mechanism[J]. Chemical Engineering Journal, 2023, 473: 145225.
    [4] Cui Wanying, Ai Hengyu, Zhang Shihao, et al. Research status on application of modified adsorbents in phosphorusremoval from wastewater[J]. Chemical Industry and Engineering Progress, 2020,39(10):17. (崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020,39(10):17.

    Cui Wanying, Ai Hengyu, Zhang Shihao, et al. Research status on application of modified adsorbents in phosphorusremoval from wastewater[J]. Chemical Industry and Engineering Progress, 2020, 3910): 17.
    [5] Aigbe U O, Ukhurebor K E, Onyancha R B, et al. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review[J]. Journal of Materials Research and Technology, 2021, 14: 2751-2774.
    [6] Meng Haoyan, Yang Mingfan, Luo Guozhi, et al. Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water[J]. Chinese Journal of Environmental Engineering, 2021,15(2):446−456. (蒙浩焱, 杨名帆, 罗国芝, 等. 载铁牡蛎壳粉对水中磷的吸附性能及机理[J]. 环境工程学报, 2021,15(2):446−456.

    Meng Haoyan, Yang Mingfan, Luo Guozhi, et al. Adsorption performance and mechanism of magnetic modified oyster shell powder on phosphorus in water[J]. Chinese Journal of Environmental Engineering, 2021, 152): 446456.
    [7] Liu Y, Liu X H, Wang H C, et al. Pyrite coupled with steel slag to enhance simultaneous nitrogen and phosphorus removal in constructed wetlands[J]. Chemical Engineering Journal, 2023, 470: 143944.
    [8] Lü Shuqing, Tian Shuangchao, Li Hechao, et al. Research status of phosphorus removal by solid waste adsorption[J]. Industrial Water Treatment, 2020,40(5):1−7. (吕淑清, 田双超, 李鹤超, 等. 固体废弃物吸附除磷研究现状[J]. 工业水处理, 2020,40(5):1−7.

    Lü Shuqing, Tian Shuangchao, Li Hechao, et al. Research status of phosphorus removal by solid waste adsorption[J]. Industrial Water Treatment, 2020, 405): 17.
    [9] Li Zimu, Li Canhua, Zha Yuhong, et al. Study on the adsorption mechanism of Cu2+ by steel slag-manganese slag composite ceramics[J]. Industrial Water Treatment, 2022,42(8):113−119. (李子木, 李灿华, 查雨虹, 等. 钢渣-锰渣复合陶粒对Cu2+的吸附机理研究[J]. 工业水处理, 2022,42(8):113−119.

    Li Zimu, Li Canhua, Zha Yuhong, et al. Study on the adsorption mechanism of Cu2+ by steel slag-manganese slag composite ceramics[J]. Industrial Water Treatment, 2022, 428): 113119.
    [10] Wang Jiabin, Li Xing, Qiu Liping, et al. Preparation of non-sintering composite steel slag filter and its phosphorus adsorption characteristics[J]. China Water & Wastewater, 2019,35(11):86−91. (王嘉斌, 李星, 邱立平, 等. 免烧复合钢渣滤料的制备及其磷吸附特性[J]. 中国给水排水, 2019,35(11):86−91.

    Wang Jiabin, Li Xing, Qiu Liping, et al. Preparation of non-sintering composite steel slag filter and its phosphorus adsorption characteristics[J]. China Water & Wastewater, 2019, 3511): 8691.
    [11] Liu Xiao, Li Xuelian, Cao Guoping, et al. Adsorption effect of steel slag haydite on phosphorus in wastewater[J]. Industrial Water Treatment, 2014,34(1):18−21. (刘晓, 李学莲, 曹国凭, 等. 钢渣陶粒对废水中磷的吸附特性[J]. 工业水处理, 2014,34(1):18−21.

    Liu Xiao, Li Xuelian, Cao Guoping, et al. Adsorption effect of steel slag haydite on phosphorus in wastewater[J]. Industrial Water Treatment, 2014, 341): 1821.
    [12] Pei Xuanyuan, Ren Hongyu, Ren Nanqi, et al. Review on the application of sludge derived biochar in the treatment of emerging contaminants in water environment[J]. Water & Wastewater Engineering, 2021,57(S2):545−552. (裴轩瑗, 任宏宇, 任南琪, 等. 污泥生物炭处理水环境新兴污染物研究进展[J]. 给水排水, 2021,57(S2):545−552.

    Pei Xuanyuan, Ren Hongyu, Ren Nanqi, et al. Review on the application of sludge derived biochar in the treatment of emerging contaminants in water environment[J]. Water & Wastewater Engineering, 2021, 57S2): 545552.
    [13] Wang Hongbin, Du Yanxia. Progress of application of acid modified fly ash in wastewater treatment[J]. World Nonferrous Metals, 2020(5):204−205. (王宏宾, 杜艳霞. 酸改性粉煤灰在废水处理中的应用研究进展[J]. 世界有色金属, 2020(5):204−205.

    Wang Hongbin, Du Yanxia. Progress of application of acid modified fly ash in wastewater treatment[J]. World Nonferrous Metals, 20205): 204205.
    [14] Zhang Jian, Wan Dongjin, Liu Yongde, et al. Alkali treatment of ZSM-5 molecular sieve and its adsorptive performance of Pb2+ from aqueous solution[J]. Journal of Environmental Engineering Technology, 2015(4):277−283. (张健, 万东锦, 刘永德, 等. 碱改性 ZSM-5沸石分子筛吸附去除水种Pb2+的研究[J]. 环境工程技术学报, 2015(4):277−283.

    Zhang Jian, Wan Dongjin, Liu Yongde, et al. Alkali treatment of ZSM-5 molecular sieve and its adsorptive performance of Pb2+ from aqueous solution[J]. Journal of Environmental Engineering Technology, 20154): 277283.
    [15] Majid A F A, Dewi R, Shahri N N M, et al. Enhancing adsorption performance of alkali activated kaolinite in the removal of antibiotic rifampicin from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023: 132209.
    [16] Cao Jun, Wang Ruochen, Zhu Hualun, et al. Effect of fenton pre-oxidation on the physicochemical properties of sludge-based biochar and its adsorption mechanisms for ammonia nitrogen removal[J]. Journal of Environmental Chemical Engineering, 2023,11(5):110689. doi: 10.1016/j.jece.2023.110689
    [17] Xin Wang, Song Yonghui, Zhang Yadi, et al. Research progress of preparation of sewage sludge-basedcarbonaceous adsorbents and their adsorption characteristics[J]. Journal of Environmental Engineering Technology, 2017,7(3):306−317. (辛旺, 宋永会, 张亚迪, 等. 污泥基碳吸附材料的制备及其吸附性能研究进展[J]. 环境工程技术学报, 2017,7(3):306−317. doi: 10.3969/j.issn.1674-991X.2017.03.044

    Xin Wang, Song Yonghui, Zhang Yadi, et al. Research progress of preparation of sewage sludge-basedcarbonaceous adsorbents and their adsorption characteristics[J]. Journal of Environmental Engineering Technology, 2017, 73): 306317. doi: 10.3969/j.issn.1674-991X.2017.03.044
    [18] Chen Yongliang, Li Huimin, Shi Lei, et al. Adsorption of amoxicillin from water by sludge-rice husk pellet biochar[J]. Technology of Water Treatment, 2023,49(10):64−69. (陈永亮, 李慧敏, 石磊, 等. 污泥-稻壳颗粒生物炭对水中阿莫西林的吸附[J]. 水处理技术, 2023,49(10):64−69.

    Chen Yongliang, Li Huimin, Shi Lei, et al. Adsorption of amoxicillin from water by sludge-rice husk pellet biochar[J]. Technology of Water Treatment, 2023, 4910): 6469.
    [19] Xu K, Li L, Huang Z, et al. Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge[J]. Science of the Total Environment, 2022,846:157399. doi: 10.1016/j.scitotenv.2022.157399
    [20] Qiao Yong. Study on dephosphorization of converter slag by leaching and removal of phosphorus from leach liquor[D]. Chongqing: Chongqing University, 2017. (谯勇. 转炉钢渣浸出脱磷及含磷浸出液吸附除磷研究[D]. 重庆: 重庆大学, 2017.

    Qiao Yong. Study on dephosphorization of converter slag by leaching and removal of phosphorus from leach liquor[D]. Chongqing: Chongqing University, 2017.
    [21] Zhu Dianmei, Shao Bolin, Zhong Keyi, et al. Adsorption performance of lanthanum-modified steel slag towards fluoride ion in water[J]. Chinese Journal of Environmental Engineering, 2023,17(4):1167−1176. (朱殿梅, 邵波霖, 钟可意, 等. 镧改性钢渣对水中氟离子的吸附性能[J]. 环境工程学报, 2023,17(4):1167−1176.

    Zhu Dianmei, Shao Bolin, Zhong Keyi, et al. Adsorption performance of lanthanum-modified steel slag towards fluoride ion in water[J]. Chinese Journal of Environmental Engineering, 2023, 174): 11671176.
    [22] Ren Z, Liu Y, Yuan L, et al. Optimizing the content of nano-SiO2, nano-TiO2 and nano-CaCO3 in portland cement paste by response surface methodology[J]. Journal of Building Engineering, 2021,35:102073. doi: 10.1016/j.jobe.2020.102073
    [23] Wang F P, Liu T J, Cai S, et al. A review of modified steel slag application in catalytic pyrolysis, organic degradation, electrocatalysis, photocatalysis, transesterification and carbon capture and storage[J]. Applied Sciences, 2021,11(10):4539. doi: 10.3390/app11104539
    [24] Chen Meiling, Yan Jiabao, Xie Pengkai, et al. Preparation and catalytic performance of steel-making slag and sludgeceramsite catalyst[J]. Journal of Wuhan University of Science and Technology, 2019,42(5):349−353. (陈美玲, 颜家保, 谢鹏凯, 等. 钢渣污泥陶粒催化剂的制备及其催化性能[J]. 武汉科技大学报, 2019,42(5):349−353.

    Chen Meiling, Yan Jiabao, Xie Pengkai, et al. Preparation and catalytic performance of steel-making slag and sludgeceramsite catalyst[J]. Journal of Wuhan University of Science and Technology, 2019, 425): 349353.
    [25] Zhang Yun, Xiao Qing, Xu Shanni, et al. Adsorption studies on phosphate by amino-functionalized nano-size composite materials[J]. Acta Chimica Sinica, 2012,17:1839−1846. (张蕴, 晓青, 许姗妮, 等. 氨基功能化纳米复合材料对磷酸盐的吸附研究[J]. 化学学报, 2012,17:1839−1846.

    Zhang Yun, Xiao Qing, Xu Shanni, et al. Adsorption studies on phosphate by amino-functionalized nano-size composite materials[J]. Acta Chimica Sinica, 2012, 17: 18391846.
    [26] An Q, Miao Y, Zhao B, et al. An alkali modified biochar for enhancing Mn2+ adsorption: Performance and chemical mechanism[J]. Materials Chemistry and Physics, 2020,248:122895. doi: 10.1016/j.matchemphys.2020.122895
    [27] Zhang X, Yu J, Jin B, et al. Experimental research on the gaseous PbCl2 adsorption by thermal alkali modified coal fly ash[J]. Journal of Environmental Chemical Engineering, 2022,10(3):107912. doi: 10.1016/j.jece.2022.107912
    [28] Ouyang Jia. Preparation and adsorption experiment of phosphate removal ceramsite[D]. Chongqing: Chongqing University, 2017. (欧阳嘉. 新型除磷填料的制备及吸附实验研究[D]. 重庆: 重庆大学, 2017.

    Ouyang Jia. Preparation and adsorption experiment of phosphate removal ceramsite[D]. Chongqing: Chongqing University, 2017.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回