留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb-Ti微合金EH36海工钢中复合析出相沉淀析出行为研究

乔家龙 郭飞虎 时朋召 操瑞宏 熊晨光 徐李军

乔家龙, 郭飞虎, 时朋召, 操瑞宏, 熊晨光, 徐李军. Nb-Ti微合金EH36海工钢中复合析出相沉淀析出行为研究[J]. 钢铁钒钛, 2024, 45(1): 122-130. doi: 10.7513/j.issn.1004-7638.2024.01.018
引用本文: 乔家龙, 郭飞虎, 时朋召, 操瑞宏, 熊晨光, 徐李军. Nb-Ti微合金EH36海工钢中复合析出相沉淀析出行为研究[J]. 钢铁钒钛, 2024, 45(1): 122-130. doi: 10.7513/j.issn.1004-7638.2024.01.018
Qiao Jialong, Guo Feihu, Shi Pengzhao, Cao Ruihong, Xiong Chenguang, Xu Lijun. Precipitation behavior of composite precipitates in Nb-Ti micro-alloy EH36 offshore steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 122-130. doi: 10.7513/j.issn.1004-7638.2024.01.018
Citation: Qiao Jialong, Guo Feihu, Shi Pengzhao, Cao Ruihong, Xiong Chenguang, Xu Lijun. Precipitation behavior of composite precipitates in Nb-Ti micro-alloy EH36 offshore steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 122-130. doi: 10.7513/j.issn.1004-7638.2024.01.018

Nb-Ti微合金EH36海工钢中复合析出相沉淀析出行为研究

doi: 10.7513/j.issn.1004-7638.2024.01.018
基金项目: 江西省重大科研专项项目(编号:20213AAE01009)。
详细信息
    作者简介:

    乔家龙,1990年出生,男,安徽六安人,博士,工程师,主要从事高品质洁净钢开发,E-mail:qiaojialong2015@126.com

  • 中图分类号: TF76,TG142.1

Precipitation behavior of composite precipitates in Nb-Ti micro-alloy EH36 offshore steel

  • 摘要: 基于EH36海工钢屈服强度影响因素的主成分回归分析,结合复合析出相固溶析出计算和经典析出动力学理论,系统研究了影响EH36海工钢屈服强度的主要因素和复合析出相的析出行为,并探讨了轧制过程奥氏体形变储能对复合析出相析出动力学的影响。结果表明,影响EH36海工钢屈服强度的主要因素为Ti、Nb和N。MN和M(C,N)分别在1728.5 K和1430.0 K开始析出,主要为(Ti,Nb)N和(Nb,Ti)C。在奥氏体相区,MN和M(C,N)的最大析出量分别为0.0165%和0.0277%,最大析出体积分数分别为0.000228%和0.000389%,发生晶界形核的最快沉淀析出温度分别为1580.3 K和1228.3 K。随着奥氏体形变储能的增加,MN和M(C,N)相对形核率呈增加趋势,析出孕育期明显缩短且沉淀强化作用增强。
  • 图  1  60 mm规格EH36海工钢不同位置显微组织形貌

    Figure  1.  Microstructure of 60 mm EH36 offshore steel at different positions

    图  2  EH36海工钢的相变和主要析出相的析出热力学

    Figure  2.  Phase transformation of EH36 and precipitation thermodynamics of main precipitations

    图  3  EH36海工钢的主要析出相的体积分数的变化规律

    Figure  3.  Variation of the volume fraction of the main precipitates of EH36

    图  4  MN和M(C,N)在不同形核机制下的相对形核率(NrT)和相对PTT曲线

    Figure  4.  Relative nucleation rate and PTT curve of MN and M(C,N) with different nucleation mechanisms

    表  1  EH36海工钢主要化学成分

    Table  1.   Main chemical composition of EH36 steel %

    CSiMnSPAlTiNbNNi, Mo, Cu, V
    0.12~0.160.20~0.401.20~1.500.0010~0.00400.015~0.0200.020~0.0500.012~0.0160.020~0.0300.0030~0.0050残余
    下载: 导出CSV

    表  2  相关参数统计及变量定义

    Table  2.   Statistics of related parameters and definition of variables

    统计项屈服强度/MPa厚度/mmw/%
    CSiMnPSAlNbNTi
    (因变量)x1x2x3x4x5x6x7x8x9x10
    极小值357420.070.131.280.010.0010.020.020.00180.007
    极大值472800.170.411.580.0280.0080.050.0330.00680.016
    均值421.1750.690.120.241.350.0180.00380.0330.0250.00410.012
    标准差24.567.790.00920.0480.050.00340.00180.00490.00290.00060.0019
    注:统计量为230个。
    下载: 导出CSV

    表  3  各成分的特征根和方差贡献率

    Table  3.   Characteristic root and variance contribution rate of each component

    自变量成分初始特征值方差贡献率/%累积贡献率/%
    Z13.34733.47433.474
    Z22.01520.15553.628
    Z31.817.99571.623
    Z41.01810.17581.798
    Z50.5845.83687.634
    Z60.3993.99491.628
    Z70.3223.22394.851
    Z80.2412.41397.264
    Z90.1961.9699.224
    Z100.0780.776100
    下载: 导出CSV

    表  4  主成分的成分矩阵

    Table  4.   Component Matrix of Principal Components

    主成分向量标准化后的自变量
    x1*x2*x3*x4*x5*x6*x7*x8*x9*x10*
    l10.6220.7670.8150.597−0.158−0.516−0.0930.118−0.1050.076
    l20.383−0.133−0.3060.4830.1570.337−0.6750.9440.658−0.092
    l3−0.2210.2660.08−0.180.583−0.181−0.219−0.1090.3970.707
    l40.1440.217−0.0790.10.5720.4450.4170.181−0.4410.083
    下载: 导出CSV

    表  5  回归系数显著性检验结果

    Table  5.   Test results of significance of regression coefficient

    自变量标准化系数差异性显著的检验值sig
    Z1−0.070−0.024
    Z20.0610.028
    Z30.1490.043
    Z4−0.1520.055
    下载: 导出CSV

    表  6  各成分对屈服强度影响的多元线性回归方程

    Table  6.   Multiple linear regression equation of the influence of each component on yield strength

    屈服强度/MPa回归方程系数
    厚度CSiMnPSAlsNbNTi
    Y*=f(xi*)−0.101−0.008−0.023−0.1020.075−0.0130.029−0.0830.030.094
    Y=f(xi)−0.013−0.838−0.477−2.03322.153−7.4535.928−28.68424.9649.572
    下载: 导出CSV

    表  7  不同成分的EH36海工钢

    Table  7.   EH36 marine steel with different compositions %

    编号CSiMnPSAlNbNTi
    1#0.100.201.200.0100.00100.0200.0200.00300.010
    2#0.120.241.350.0180.00380.0330.0250.00410.012
    3#0.170.411.580.0280.00500.0500.0330.00680.016
    下载: 导出CSV

    表  8  动力学计算相关参数总结[16]

    Table  8.   Relevant parameters for kinetic calculation [16]

    固溶度积公式控制元素扩散系数D/(cm2·s−1)界面能 σ/(J·m−2)摩尔体积×105/(m3·mol−1)晶格常数/nm
    NbC3.70-9100/T530 exp(-344000/RT)1.3435-0.6054×10−3T1.3450.4470
    TiC2.75-7000/T0.15 exp(-251000/RT)1.2360-0.5570×10×3T1.2120.4318
    NbN2.80-8500/T530 exp(-344000/RT)1.2999-0.5858×10−3T1.2770.4394
    TiN0.32-8000/T0.15 exp(-251000/RT)1.1803-0.5318×10−3T1.1470.4282
    下载: 导出CSV

    表  9  晶界形核和位错形核条件下不同形变储能下复合析出相MN和M(C,N)形核参量的计算结果

    Table  9.   Nucleation parameters of MN and M(C,N) at different deformation energies and with grain boundary nucleation

    T/KMN,lg(I/K)M(C,N),lg(I/K)
    晶界形核位错形核晶界形核位错形核
    0 J/mol2000 J/mol4000 J/mol0 J/mol2000 J/mol4000 J/mol0 J/mol2000 J/mol4000 J/mol0 J/mol2000 J/mol4000 J/mol
    1353−27.95−27.56−27.18−33.16−32.64−32.13−36.31−35.93−35.54−84.44−83.92−83.41
    1303−28.32−27.92−27.52−33.13−32.59−32.06−34.44−34.04−33.63−59.79−59.26−58.72
    1253−28.7−28.29−27.87−33.28−32.73−32.17−33.95−33.54−33.12−50.9−50.34−49.78
    1203−29.1−28.67−28.23−33.55−32.97−32.39−33.95−33.52−33.08−46.87−46.29−45.71
    1153−29.39−28.94−28.49−33.57−32.97−32.36−34.18−33.73−33.27−44.89−44.28−43.68
    1103−29.65−29.17−28.7−33.37−32.73−32.1−34.48−34−33.53−43.36−42.73−42.09
    1053−29.93−29.43−28.94−33.59−32.93−32.27−34.37−33.88−33.38−41.2−40.54−39.88
    下载: 导出CSV
  • [1] Zhao Mengjing, Wang Feng, Xi Xiaojun, et al. Effect of Y on inclusions characteristics and tensile properties in EH36 shipbuilding steel[J]. Iron & Steel, 2019,54(7):67−73. (赵梦静, 王峰, 习小军, 等. 钇对EH36船板钢夹杂物特性和拉伸性能的影响[J]. 钢铁, 2019,54(7):67−73.

    Zhao Mengjing, Wang Feng, Xi Xiaojun, et al. Effect of Y on inclusions characteristics and tensile properties in EH36 shipbuilding steel[J]. Iron & Steel, 2019, 54(7): 67-73.
    [2] Zhou Yutao, Yang Shufeng, Li Jingshe, et al. Inclusions evolution of high-grade ship plate steel in practical production processes[J]. Iron & Steel, 2019,54(1):33−42. (周宇涛, 杨树峰, 李京社, 等. 高级别船板钢生产过程中夹杂物的演变规律[J]. 钢铁, 2019,54(1):33−42.

    Zhou Yutao, Yang Shufeng, Li Jingshe, et al. Inclusions evolution of high-grade ship plate steel in practical production processes[J]. Iron & Steel, 2019, 54(1): 33-42.
    [3] Wang Hongtao, Tian Yong, Ye Qibin, et al. Development of heavy ship plate in extremely cold environment[J]. Steel Rolling, 2018,35(5):48−53. (王红涛, 田勇, 叶其斌, 等. 极寒环境下厚规格船舶用钢的发展[J]. 轧钢, 2018,35(5):48−53.

    Wang Hongtao, Tian Yong, Ye Qibin, et al. Development of heavy ship plate in extremely cold environment[J]. Steel Rolling, 2018, 35(5): 48-53.
    [4] Yang Kaisheng. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017,10:34−39. (阳开生. 热处理及NbV-N微合金化对船板钢组织性能的影响[J]. 中国冶金, 2017,10:34−39.

    Yang Kaisheng. Effect of heat treatment process and NbV-N microalloying on mechanical property and microstructure of grade ship plate steel[J]. China Metallurgy, 2017, 10: 34-39.
    [5] Shu Wei, Wang Xuemin, Li Shurui, et al. Influence of second-phase particles containing Ti on microstructure and properties of weld-heat-affected-zone of a microalloyed steel[J]. Acta Metallurgica Sinica, 2010,8:997−1003. (舒玮, 王学敏, 李书瑞, 等. 含Ti复合第二相粒子对微合金钢焊接热影响区组织和性能的影响[J]. 金属学报, 2010,8:997−1003.

    Shu Wei, Wang Xuemin, Li Shurui, et al. Influence of second-phase particles containing Ti on microstructure and properties of weld-heat-affected-zone of a microalloyed steel[J]. Acta Metallurgica Sinica, 2010, 8: 997-1003.
    [6] Wu Shaowen, Zhang Caijun, Zheng Feifan, et al. Effect of second phase particles on austenite grain size in EH40 steel[J]. Heat Treatment of Metals, 2019,42(7):88−92. (武绍文, 张彩军, 郑非凡, 等. EH40钢中第二相粒子对奥氏体尺寸的影响[J]. 金属热处理, 2019,42(7):88−92.

    Wu Shaowen, Zhang Caijun, Zheng Feifan, et al. Effect of second phase particles on austenite grain size in EH40 steel[J]. Heat Treatment of Metals, 2019, 42(7): 88-92.
    [7] Liu Jiahe, Wang Zubin. Recent development on manufacturing technology of HSLA steel[J]. Iron & Steel, 1996,31(10):73−79. (刘嘉禾, 王祖滨. 低合金高强度钢生产工艺技术的发展[J]. 钢铁, 1996,31(10):73−79.

    Liu Jiahe, Wang Zubin. Recent development on manufacturing technology of HSLA steel[J]. Iron & Steel, 1996, 31(10): 73-79.
    [8] Shi Xiao, Wu Jianzhong, Guo Hanjie, et al. Precipitation behaviors of carbides and carbonitrides in DH36 high-strength ship plate steel[J]. Journal of Central South University (Science and Technology), 2018,283(3):14−24. (石骁, 吴建中, 郭汉杰, 等. DH36高强度船板钢中碳化物及碳氮化物析出行为[J]. 中南大学学报(自然科学版), 2018,283(3):14−24.

    Shi Xiao, Wu Jianzhong, Guo Hanjie, et al. Precipitation behaviors of carbides and carbonitrides in DH36 high-strength ship plate steel[J]. Journal of Central South University (Science and Technology), 2018, 283(3): 14-24.
    [9] Vanovsek W, Bernhard C, Fiedler M, et al. Effect of titanium on the solidification and postsolidification microstructure of high-strength steel welds[J]. Welding in the World, 2013,57(5):665−674. doi: 10.1007/s40194-013-0063-1
    [10] Zou Xiaodong, Zhao Dapeng, Sun Jincheng, et al. An integrated study on the evolution of inclusions in EH36 shipbuilding steel with Mg addition: From casting to welding[J]. Metallurgical and Materials Transactions, B, 2018,49(2):481−489. doi: 10.1007/s11663-017-1163-x
    [11] Wang Bingxing, Wu Zhongzi, Lou Haonan, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel[J]. Journal of Iron and Steel Research, 2019,31(2):154−161. (王丙兴, 武仲子, 娄号南, 等. 氧化物冶金工艺对EH36钢HAZ组织性能的影响[J]. 钢铁研究学报, 2019,31(2):154−161.

    Wang Bingxing, Wu Zhongzi, Lou Haonan, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel[J]. Journal of Iron and Steel Research, 2019, 31(2): 154-161.
    [12] Shi Minghao, Duan Zhengtao, Zhang Pengyan, et al. Effect of inclusions on formation of acicular ferrite in Ti and Zr micro-alloying steel[J]. Journal of Northeastern University(Natural Science), 2012,10:1424−1427. (石明浩, 段争涛, 张朋彦, 等. 夹杂物对Ti, Zr微合金钢中针状铁素体形成的影响[J]. 东北大学学报(自然科学版), 2012,10:1424−1427.

    Shi Minghao, Duan Zhengtao, Zhang Pengyan, et al. Effect of inclusions on formation of acicular ferrite in Ti and Zr micro-alloying steel[J]. Journal of Northeastern University(Natural Science), 2012, 10: 1424-1427.
    [13] Wang Baoming, Zhao Zhiyi, Chen Lingfeng, et al. Principal component regression analysis on the size and quantity of inclusions affecting magnetic properties of non-oriented silicon steel[J]. Metallurgical Analysis, 2014,34(10):1−6. (王宝明, 赵志毅, 陈凌峰, 等. 夹杂物尺寸及数量对无取向硅钢磁性能影响的主成分回归分析[J]. 冶金分析, 2014,34(10):1−6.

    Wang Baoming, Zhao Zhiyi, Chen Lingfeng, et al. Principal component regression analysis on the size and quantity of inclusions affecting magnetic properties of non-oriented silicon steel [J]. Metallurgical Analysis, 2014, 34(10): 1-6.
    [14] Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis for effects of grain size on magnetic properties of non-oriented silicon steel[J]. Transactions of Materials and Heat Treatment, 2014,35(11):215−218. (陈凌峰, 赵志毅, 王宝明, 等. 晶粒尺寸对无取向硅钢磁性能影响的主成分回归分析[J]. 材料热处理学报, 2014,35(11):215−218.

    Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis for effects of grain size on magnetic properties of non-oriented silicon steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(11): 215-218.
    [15] Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis on texture affecting magnetic properties of non-oriented silicon steel[J]. Hot Working Technology, 2015,44(16):62−64, 67. (陈凌峰, 赵志毅, 王宝明, 等. 织构对无取向硅钢磁性能影响的主成分回归分析[J]. 热加工工艺, 2015,44(16):62−64, 67.

    Chen Lingfeng, Zhao Zhiyi, Wang Baoming, et al. Principal component regression analysis on texture affecting magnetic properties of non-oriented silicon steel[J]. Hot Working Technology, 2015, 44(16): 62-64, 67.
    [16] 雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.

    Yong Qilong. Secondary phases in steel [M]. Beijing: Metallurgical Industry Press, 2006.
    [17] Adrian H. Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium[J]. Materials Science and Technology, 1992,8(5):406−420. doi: 10.1179/mst.1992.8.5.406
    [18] Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica, 2018,54(8):38−46. (张可, 孙新军, 张明亚, 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学[J]. 金属学报, 2018,54(8):38−46.

    Zhang Ke, Sun Xinjun, Zhang Mingya, et al. Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel[J]. Acta Metallurgica Sinica, 2018, 54(8): 38-46.
    [19] Liu Min, Feng Xiaoming, Lai Chaobin, et al. Influence of hot rolling parameters on recrystallization of steel E690 for sea platform[J]. Heat Treatment of Metals, 2015,40(10):64−67. (刘敏, 冯小明, 赖朝彬, 等. 热轧工艺对海洋平台用钢E690再结晶的影响[J]. 金属热处理, 2015,40(10):64−67.

    Liu Min, Feng Xiaoming, Lai Chaobin, et al. Influence of hot rolling parameters on recrystallization of steel E690 for sea platform[J]. Heat Treatment of Metals, 2015, 40(10): 64-67.
    [20] Yao Na, Xing Chao. Precipitation kinetics of composite carbides of Nb-Ti-V-Mo microalloyed steel[J]. Iron Steel Vanadium Titanium, 2022,43(4):142−149. (姚娜, 兴超. Nb-Ti-V-Mo微合金钢中复合碳化物的析出动力学[J]. 钢铁钒钛, 2022,43(4):142−149.

    Yao Na, Xing Chao. Precipitation kinetics of composite carbides of Nb-Ti-V-Mo microalloyed steel[J]. Iron Steel Vanadium Titanium, 2022, 43(4): 142-149.
    [21] Wang Zhaodong, Qu Jinbo, Liu Xianghua, et al. Investigation of strain-induced precipitation behavior in microalloying steel by stress relaxation method[J]. Acta Metallurgica Sinica, 2000,36(6):618−621. (王昭东, 曲锦波, 刘相华, 等. 松弛法研究微合金钢碳氮化物的应变诱导析出行为[J]. 金属学报, 2000,36(6):618−621.

    Wang Zhaodong, Qu Jinbo, Liu Xianghua, et al. Investigation of strain-induced precipitation behavior in microalloying steel by stress relaxation method[J]. Acta Metallurgica Sinica, 2000, 36(6): 618-621.
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回