留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La对FeCrAl合金中非金属夹杂物的影响

文佳航 亓捷 刘承军

文佳航, 亓捷, 刘承军. La对FeCrAl合金中非金属夹杂物的影响[J]. 钢铁钒钛, 2024, 45(1): 131-138. doi: 10.7513/j.issn.1004-7638.2024.01.019
引用本文: 文佳航, 亓捷, 刘承军. La对FeCrAl合金中非金属夹杂物的影响[J]. 钢铁钒钛, 2024, 45(1): 131-138. doi: 10.7513/j.issn.1004-7638.2024.01.019
Wen Jiahang, Qi Jie, Liu Chengjun. Effect of La on non-metallic inclusions in FeCrAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 131-138. doi: 10.7513/j.issn.1004-7638.2024.01.019
Citation: Wen Jiahang, Qi Jie, Liu Chengjun. Effect of La on non-metallic inclusions in FeCrAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 131-138. doi: 10.7513/j.issn.1004-7638.2024.01.019

La对FeCrAl合金中非金属夹杂物的影响

doi: 10.7513/j.issn.1004-7638.2024.01.019
基金项目: 国家自然科学基金(U1908224,51904064);中央高校基本科研业务专项资金资助(N2125013)。
详细信息
    作者简介:

    文佳航,1998年出生,男,甘肃平凉人,硕士研究生,主要从事钢中夹杂物控制工作,E-mail:2992022322@qq.com

    通讯作者:

    亓捷,1987年出生,男,山东莱芜人,博士,讲师,主要从事特色冶金渣系设计和高品质钢开发工作,E-mail:qij@smm.neu.edu.cn

  • 中图分类号: TF704.7

Effect of La on non-metallic inclusions in FeCrAl alloy

  • 摘要: 为研究稀土La对FeCrAl合金中夹杂物类型及分布的影响,在热力学分析的基础上,借助SEM-EDS观察分析了夹杂物三维形貌及其成分,统计分析了夹杂物尺寸及数量。结果表明,1600 ℃时FeCrAl合金中只存在单一Al2O3夹杂。凝固过程中,随着体系中固相率的增大,AlN在凝固前沿析出。加入质量分数为0.0093%的La后,Al2O3被变质为LaAlO3。La添加量为0.0378%时,主要夹杂物类型为LaAlO3+La2O2S,夹杂物数量明显增多,且随着保温时长的增加, La2O2S比例逐渐增加。La添加量为0.0964%时,La2O2S比例进一步增加,保温60 min后,钢中只有单一La2O2S夹杂稳定存在。夹杂物聚合特性对夹杂物粒径影响显著。1600 ℃下保温60 min,仅含单一LaAlO3的试样中,LaAlO3在保温前期呈现较强的聚合趋势,夹杂物平均粒径先由2.34 μm增大至3.31 μm,随后减小至1.93 μm。La2O2S聚合趋势较弱,含有La2O2S的试样中,夹杂物平均粒径较小且变化稳定,在保温前期,夹杂物平均粒径稳定在1.8~2.0 μm。
  • 图  1  16Cr5Al中夹杂物平衡析出示意

    Figure  1.  Equilibrium precipitation diagram of inclusions in 16Cr5Al

    图  2  16Cr5Al中Al-N平衡析出(1873 K)

    Figure  2.  Al-N equilibrium precipitation diagram in 16Cr5Al(1873 K)

    图  3  Fe-16Cr-5Al-0.005N体系中AlN析出曲线(1800 K)

    Figure  3.  Thermodynamics of AlN formation in the Fe-16Cr-5Al-0.005N at 1800 K

    图  4  不含稀土试样中典型夹杂物形貌及能谱分析结果

    (a)AlN;(b)Al2O3

    Figure  4.  Morphology and energy spectrum analysis results of typical inclusions in steel without RE addition

    图  5  不含稀土试样中典型夹杂物三维形貌

    (a) AlN;(b) Al2O3

    Figure  5.  Three-dimensional morphology of typical inclusions in steel without RE addition

    图  6  典型稀土夹杂物形貌及能谱分析结果

    (a) LaAlO3;(b) La2O2S

    Figure  6.  Typical rare earth inclusion morphology and energy spectrum analysis results

    图  7  典型稀土夹杂物三维形貌

    (a)、(b) La2O2S;(c)、(d) LaAlO3

    Figure  7.  Three-dimensional morphology of typical rare earth inclusions

    图  8  单个稀土夹杂物长宽比值

    Figure  8.  Length-width ratio of single rare earth inclusion

    图  9  稀土夹杂物存在状态及数密度变化

    Figure  9.  Existence state and number density change of rare earth inclusions in steel under different conditions

    图  10  稀土夹杂物粒径统计

    Figure  10.  Statistics of particle size of rare earth inclusions in steel under different conditions

    表  1  试验钢化学成分

    Table  1.   Chemical compositions of experimental steels %

    编号CrAlLaCNSO[O]1[O]2
    1#15.965.070.00930.1560.00520.00050.00190.0030<0.0001
    2#16.034.960.03780.1320.00680.00070.00230.0055<0.0001
    3#15.925.050.09640.1280.0046<0.00050.00130.0056<0.0001
    下载: 导出CSV

    表  2  溶质元素的平衡分配系数及扩散系数

    Table  2.   Equilibrium partition coefficient and diffusion coefficient of solute elements

    溶质元素$ {k}^{\delta /L} $$ {D}_{\mathrm{s}} $/(m2·s−1
    Al0.965.9×10−4×exp(−241417/RT)
    Cr0.952.4×10−4×exp(−239785/RT)
    N0.258×10−7×exp(−79078/RT)
    下载: 导出CSV

    表  3  钢中元素相互作用系数

    Table  3.   Coefficient of interaction of elements in steel

    $ {e}_{{\rm{Al}}}^{{\rm{Al}}} $$ {r}_{{\rm{Al}}}^{{\rm{Al}}} $$ {e}_{{\rm{Al}}}^{{\rm{Cr}}} $$ {r}_{{\rm{Al}}}^{{\rm{Cr}}} $$ {e}_{{\rm{Al}}}^{{\rm{N}}} $$ {r}_{{\rm{Al}}}^{{\rm{N}}} $$ {e}_{{\rm{N}}}^{{\rm{Al}}} $$ {r}_{{\rm{N}}}^{{\rm{Al}}} $$ {e}_{{\rm{N}}}^{{\rm{Cr}}} $$ {r}_{{\rm{N}}}^{{\rm{Cr}}} $$ {e}_{{\rm{N}}}^{{\rm{N}}} $$ {r}_{{\rm{N}}}^{{\rm{N}}} $
    0.043−0.0010.012200.03300.0170−0.060.000700
    下载: 导出CSV

    表  4  试样中不同夹杂物类型

    Table  4.   Different inclusion types in steel samples

    编号夹杂物类型不同稀土处理时间夹杂物类型变化
    5 min10 min20 min30 min60 min
    1#AlN
    Al2O3
    LaAlO3
    La2O2S
    2#AlN
    Al2O3
    LaAlO3
    La2O2S
    3#AlN
    Al2O3
    LaAlO3
    La2O2S
    下载: 导出CSV
  • [1] Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect[J]. Oxidation of Metals, 1996,45(1):1−37.
    [2] Smialek J L. Invited review paper in commemoration of over 50 years of oxidation of metals: alumina scale adhesion mechanisms: A retrospective assessment[J]. Oxidation of Metals, 2022,97(2):1−50.
    [3] Pan D, Zhang R, Wang H, et al. Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam[J]. Journal of Alloys and Compounds, 2016,684:549−555. doi: 10.1016/j.jallcom.2016.05.145
    [4] Park D J, Kim H G, Park J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment[J]. Corrosion Science, 2015,94:459−465. doi: 10.1016/j.corsci.2015.02.027
    [5] Pauletto G, Vaccari A, Groppi G, et al. FeCrAl as a catalyst support[J]. Chemical Reviews, 2020,120(15):7516−7550. doi: 10.1021/acs.chemrev.0c00149
    [6] Kim D H, Yu B Y, Cha P R, et al. A study on FeCrAl foam as effective catalyst support under thermal and mechanical stresses[J]. Surface and Coatings Technology, 2012,209:169−176. doi: 10.1016/j.surfcoat.2012.08.017
    [7] Jiang G, Xu D, Feng P, et al. Corrosion of FeCrAl alloys used as fuel cladding in nuclear reactors[J]. Journal of Alloys and Compounds, 2021,869:1−12.
    [8] Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015,467:703−716. doi: 10.1016/j.jnucmat.2015.10.019
    [9] Wang W, Zhu H, Han Y, et al. Effect of Al content on non-metallic inclusions in Fe–23Mn–xAl–0.7C lightweight steels[J]. Ironmaking & Steelmaking, 2021,48(9):1038−1047.
    [10] Yin H. Inclusion characterization and thermodynamics for high-Al advanced high-strength steels[J]. Iron & Steel Technology, 2006,3(6):64−73.
    [11] He Y, Liu J, Qiu S, et al. Thermodynamic analysis of inclusion characteristics in as-cast FeCrAl-(La) alloys[J]. Ironmaking & Steelmaking, 2018,47(1):1−9.
    [12] Jo J O, Jung M S, Park J H, et al. Thermodynamic interaction between chromium and aluminum in liquid Fe–Cr alloys containing 26% Cr[J]. ISIJ International, 2011,51(2):208−213. doi: 10.2355/isijinternational.51.208
    [13] Yuan F, Wang X, Zhang J, et al. Numerical simulation of Al2O3 deposition at a nozzle during continuous casting[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008,15(3):227−235. doi: 10.1016/S1005-8850(08)60043-2
    [14] Zhang L, Thomas B G. State of the art in the control of inclusions during steel ingot casting[J]. Metallurgical and Materials Transactions B, 2006,37(5):733−761. doi: 10.1007/s11663-006-0057-0
    [15] Wang H, Bao Y, Zhi J, et al. Effect of rare earth Ce on the morphology and distribution of Al2O3 inclusions in high strength IF steel containing phosphorus during continuous casting and rolling process[J]. ISIJ International, 2021,61(3):657−666. doi: 10.2355/isijinternational.ISIJINT-2020-053
    [16] Wang L, Lin Q, Ji J, et al. New study concerning development of application of rare earth metals in steels[J]. Journal of Alloys and Compounds, 2006,408:384−386.
    [17] Yang Z, Pan J, Wang Z, et al. New insights into the mechanism of yttrium changing high-temperature oxide growth of Fe-13Cr–6Al–2Mo–0.5Nb alloy for fuel cladding[J]. Corrosion Science, 2020,172:1−9.
    [18] Yang Jichun, Wang Jun, Ren Lei, et al. Effect of cerium on microstructure and impact property of S32550 duplex stainless steel[J]. Iron & Steel, 2020,55(1):86−92,100. (杨吉春, 王军, 任磊, 等. 铈对S32550双相不锈钢微观组织及冲击性能的影响[J]. 钢铁, 2020,55(1):86−92,100. doi: 10.13228/j.boyuan.issn0449-749x.20190165

    Yang Jichun, Wang Jun, Ren Lei, et al. Effect of cerium on microstructure and impact property of S32550 duplex stainless steel[J]. Iron & Steel, 2020, 55(1): 86-92, 100. doi: 10.13228/j.boyuan.issn0449-749x.20190165
    [19] Wang Y, Liu C. Evolution and deformability of inclusions in steel containing rare‐earth element under different deoxidation conditions[J]. Steel Research International, 2022,93(8):1−11.
    [20] Ma Shuai, Li Yang, Jiang Zhouhua, et al. Effect of Ce on evolution of inclusions in 440C stainless bearing steel[J]. China Metallurgy, 2022,32(6):71−78. (马帅, 李阳, 姜周华, 等. Ce对440C不锈轴承钢夹杂物演变的影响[J]. 中国冶金, 2022,32(6):71−78.

    Ma Shuai, Li Yang, Jiang Zhouhua, et al. Effect of Ce on evolution of inclusions in 440 C stainless bearing steel[J]. China Metallurgy, 2022, 32(6): 71-78.
    [21] Ishii K, Kohno M, Ishikawa S, et al. Effect of rare-earth elements on high-temperature oxidation resistance of Fe–20Cr–5Al alloy foils[J]. Materials Transactions, JIM, 1997,38(9):787−792. doi: 10.2320/matertrans1989.38.787
    [22] Ishi K, Tangiguchi S. Effect of La and Hf additions on the high-temperature oxidation resistance of high-purity Fe–20Cr–5Al alloy foils[J]. Oxidation of Metals, 2000,54:491−508. doi: 10.1023/A:1004694719134
    [23] Ukai S, Kato S, Furukawa T, et al. High-temperature creep deformation in FeCrAl-oxide dispersion strengthened alloy cladding[J]. Materials Science and Engineering:A, 2020,794:1−13.
    [24] Wang Y, Liu C. Agglomeration characteristics of various inclusions in Al-killed molten steel containing rare earth element[J]. Metallurgical and Materials Transactions B, 2020,51(6):2585−2595. doi: 10.1007/s11663-020-01938-1
    [25] Zhang Q, Min Y, Xu H, et al. Formation and evolution of silicate inclusions in molten steel by magnesium treatment[J]. ISIJ International, 2019,59(3):391−397. doi: 10.2355/isijinternational.ISIJINT-2018-543
    [26] Yang Zhiji, Liu Woyuan. Study on solid solubility and precipitated phase of mixed rare earth in steel[J]. Iron & Steel, 1986,(4):36−41. (杨植玑, 刘沃垣. 混合稀土在钢铁中的固溶量及析出相的研究[J]. 钢铁, 1986,(4):36−41. doi: 10.13228/j.boyuan.issn0449-749x.1986.04.009

    Yang Zhiji, Liu Woyuan. Study on solid solubility and precipitated phase of mixed rare earth in steel[J]. Iron & Steel, 1986(4): 36-41. doi: 10.13228/j.boyuan.issn0449-749x.1986.04.009
    [27] Brody H D. Solute redistribution in dendritic solidification [D]. Cambridge, MA Aug: Massachusetts Institute of Technology, 1965.
    [28] Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion[J]. Metallurgical Transactions A, 1981,12(6):965−971. doi: 10.1007/BF02643477
    [29] Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels[J]. Metallurgical and Materials Transactions A, 2001,32(7):1755−1767. doi: 10.1007/s11661-001-0152-4
    [30] Ghosh A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel[J]. ISIJ International, 2009,49(12):1819−1827. doi: 10.2355/isijinternational.49.1819
    [31] 陈家祥. 炼钢常用图表数据手册[M]. 北京: 冶金工业出版社, 1984.

    Chen Jiaxiang. Steelmaking common chart data manual[M] . Beijing: Metallurgical Industry Press, 1984.
    [32] Thermodynamic data for steelmaking [M]. Sendai-shi: Tohoku University Press, 2010.
    [33] Wagner C. Thermodynamics of alloys [M]. Cambridge: Addison-Wesle Press, 1952.
    [34] Wang H, Bai B, Jiang S, et al. An in situ study of the formation of rare earth inclusions in arsenic high carbon steels[J]. ISIJ International, 2019,59(7):1259−1265. doi: 10.2355/isijinternational.ISIJINT-2018-853
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回