留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO-SiO2-MgO-Al2O3-TiO2-CaCl2渣系粘流特性研究

乔军强 王振飞 潘月军 邢相栋 张建良 徐润生

乔军强, 王振飞, 潘月军, 邢相栋, 张建良, 徐润生. CaO-SiO2-MgO-Al2O3-TiO2-CaCl2渣系粘流特性研究[J]. 钢铁钒钛, 2024, 45(1): 145-151. doi: 10.7513/j.issn.1004-7638.2024.01.021
引用本文: 乔军强, 王振飞, 潘月军, 邢相栋, 张建良, 徐润生. CaO-SiO2-MgO-Al2O3-TiO2-CaCl2渣系粘流特性研究[J]. 钢铁钒钛, 2024, 45(1): 145-151. doi: 10.7513/j.issn.1004-7638.2024.01.021
Qiao Junqiang, Wang Zhenfei, Pan Yuejun, Xing Xiangdong, Zhang Jianliang, Xu Runsheng. Study on viscous flow characteristics of CaO-SiO2- MgO-Al2O3-TiO2-CaCl2 slag system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 145-151. doi: 10.7513/j.issn.1004-7638.2024.01.021
Citation: Qiao Junqiang, Wang Zhenfei, Pan Yuejun, Xing Xiangdong, Zhang Jianliang, Xu Runsheng. Study on viscous flow characteristics of CaO-SiO2- MgO-Al2O3-TiO2-CaCl2 slag system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 145-151. doi: 10.7513/j.issn.1004-7638.2024.01.021

CaO-SiO2-MgO-Al2O3-TiO2-CaCl2渣系粘流特性研究

doi: 10.7513/j.issn.1004-7638.2024.01.021
基金项目: 国家自然科学基金项目(52174325);陕西省创新能力支撑计划(2023-CX-TD-53)。
详细信息
    作者简介:

    乔军强,1981年出生,男,陕西榆林人,本科,高级工程师,E-mail:qiaoshenyou@163.com

    通讯作者:

    邢相栋,1983年出生,男,山东日照人,博士研究生,教授,E-mail:xaxingxiangdong@163.com

  • 中图分类号: TF534

Study on viscous flow characteristics of CaO-SiO2- MgO-Al2O3-TiO2-CaCl2 slag system

  • 摘要: 炉渣的粘流特性与高炉的稳定顺行密切相关。研究了含氯高钛渣(CaO-SiO2-MgO-Al2O3-TiO2-CaCl2)的粘度和熔化性温度,并采用傅里叶变换红外光谱(FTIR)和拉曼光谱(Raman)分析其结构演变。结果表明,氯元素的加入可以降低炉渣粘度,简化炉渣结构。由于氯元素在高温下容易蒸发,因此在粘度测试过程中氯含量略有下降。粘性流动活化能的变化趋势与粘度的变化趋势相似。[SiO4]-四面体结构和Ti-O-(Ti或Si)键也会被破坏。Q2和Q3单元的相对面积分数减少,Q0和Q1单元的相对面积分数增加,导致炉渣聚合度降低。
  • 图  1  CaO-SiO2-MgO-Al2O3-TiO2-CaCl2渣XRD谱

    Figure  1.  XRD patterns of CaO-SiO2-MGO-Al2O3-TiO2-CaCl2 slag

    图  2  炉渣粘度测量试验装置示意

    Figure  2.  Schematic diagram of the experimental device for measuring slag viscosity

    图  3  氯含量、温度对炉渣粘度的影响

    Figure  3.  The effect of chlorine content and temperature on slag viscosity

    图  4  不同氯含量下熔渣粘度与温度的关系

    Figure  4.  The relationship between slag viscosity and temperature with different chlorine contents

    图  5  炉渣结构红外光谱分析结果

    Figure  5.  Infrared spectrum analysis of slag structure

    图  6  不同氯含量的拉曼光谱

    Figure  6.  Raman spectra of the slags with different chlorine contents

    图  7  不同氯含量的CaO-SiO2-MgO-Al2O3-TiO2-CaCl2渣各波段的相对面积分数

    Figure  7.  Relative area fraction of each band of CaO-SiO2-MgO-Al2O3-TiO2-Cl2 slag with different chlorine content

    图  8  氯对桥氧平均数的影响

    Figure  8.  The effect of chlorine on mean bridge oxygen

    表  1  渣样主要化学成分

    Table  1.   Main chemical compositions of slag sample %

    编号CaOSiO2MgOAl2O3TiO2CaCl2C/S
    129.8225.977.4114.3322.470.001.15
    229.5225.717.3414.1922.241.001.15
    329.2225.457.2614.0422.032.001.15
    428.9325.197.1913.9021.793.001.15
    528.0324.416.9713.4721.126.001.15
    626.8423.376.6712.9020.2210.001.15
    下载: 导出CSV

    表  2  不同Cl含量对熔渣粘流活化能的影响

    Table  2.   The effect of different Cl content on activation energy of slag viscous flow

    编号氯含量/%活化能Ea/( kJ·mol−1)
    10260.719
    20.49257.360
    30.90254.341
    41.39250.742
    52.96243.442
    65.21231.819
    下载: 导出CSV
  • [1] Ou Yang, Sun Yongsheng, Yu Jianwen, et al. Research status and development prospect of utilization of vanadium- titanium magnetite[J]. Journal of Iron and Steel Research, 2021,33(4):267−278. (欧杨, 孙永升, 余建文, 等. 钒钛磁铁矿加工利用研究现状及发展趋势[J]. 钢铁研究学报, 2021,33(4):267−278. doi: 10.13228/j.boyuan.issn1001-0963.20200229

    Ou Yang, Sun Yongshen, Yu Jianwen, et al. Research status and development prospect of utilization of vanadium- titanium magnetite[J]. Journal of Iron and Steel Research, 2021, 33(4): 267-278. doi: 10.13228/j.boyuan.issn1001-0963.20200229
    [2] Yan Zhiming, Lü Xuewei, He Wenchao, et al. Effect of TiO2 on the liquid zone and apparent viscosity of SiO2-CaO-8%MgO-14%Al2O3 system[J]. ISIJ Int, 2017,57(1):31−36. doi: 10.2355/isijinternational.ISIJINT-2016-420
    [3] Pang Zhengde, Lü Xuewei, Jiang Yuyang, et al. Blast furnace ironmaking process with super-high TiO2 in the slag: Viscosity and melting properties of the slag[J]. Metall Mater Trans B, 2019,51(2):722−731.
    [4] Zhang Xu, Zhang Jianliang, Hu Zhengwen, et al. Effect of CaCl2 on RDI and RI of sinter[J]. J Iron Steel Res Int, 2010,17(11):7−12. doi: 10.1016/S1006-706X(10)60162-8
    [5] Okeda M, Hasegawa M, Iwase M. Solubilities of chlorine in CaO-SiO2-Al2O3-MgO slags: Correlation between sulfide and chloride capacities[J]. Metall Mater Trans B, 2010,42(2):281−290.
    [6] Shankar Amitabh, Mårten Görnerup, Lahiri A K, et al. Experimental investigation of the viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 slags[J]. Metall Mater Trans B, 2007,38(6):911−915. doi: 10.1007/s11663-007-9087-5
    [7] Liu Wenguo, Qin Jianghao, Xing Xiangdong, et al. Viscosity and structure evolution of CaO–SiO2–MgO–Al2O3–BaO slag with the CaO/SiO2 mass ratio of 0.9[J]. Ceram Int, 2021,47(23):33483−33489. doi: 10.1016/j.ceramint.2021.08.255
    [8] Wang Zhanjun, Il Sohn. Effect of substituting CaO with BaO on the viscosity and structure of CaO‐BaO‐SiO2‐MgO‐Al2O3 slags[J]. J Am Ceram Soc, 2018,101(9):4285−4296. doi: 10.1111/jace.15559
    [9] Jiao Kexin, Zhang Jianliang, Wang Zhiyu, et al. Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags[J]. Steel Res Int, 2017,88(5):1600296. doi: 10.1002/srin.201600296
    [10] Fan Xiaoyue, Zhang Jianliang, Jiao Kexin, et al. Influence of B2O3 on viscosity and structure of low MgO slag containing titanium[J]. Metall Res Technol, 2018,115(3):313. doi: 10.1051/metal/2017103
    [11] Ren Shan, Zhang Jianliang, Wu Liushun, et al. Influence of B2O3 on viscosity of high Ti-bearing blast furnace slag[J]. ISIJ Int, 2012,52(6):984−991. doi: 10.2355/isijinternational.52.984
    [12] Wang Wanlin, Dai Shifan, Zhou Lejun, et al. Viscosity and structure of MgO–SiO2-based slag melt with varying B2O3 content[J]. Ceram Int, 2020,46(3):3631−3636. doi: 10.1016/j.ceramint.2019.10.082
    [13] Lin Yinhe, Zhang Liqiang, Huang Xiaoli. Influence of CaF2 on the apparent viscosity of CaO-SiO2-MgO-Al2O3-TiO2 slags[J]. Metall Res Technol, 2017,114(6):606. doi: 10.1051/metal/2017067
    [14] Chang Zhiyu, Jiao Kexin, Zhang Jianliang, et al. Effect of TiO2 and MnO on viscosity of blast furnace slag and thermodynamic analysis[J]. ISIJ Int, 2018,58(12):2173−2179. doi: 10.2355/isijinternational.ISIJINT-2018-379
    [15] Zheng Jianlu, Xing Xiangdong, Pang Zhuogang, et al. Effect of Na2CO3, HF, and CO2 treatment on the regeneration of exhausted activated carbon used in sintering flue gas[J]. ACS Omega, 2021,6(39):25762−25771. doi: 10.1021/acsomega.1c04182
    [16] Wang Cui, Zhang Jianliang, Zhang Heshun, et al. Effect of chlorine on the viscosities and structures of blast furnace slags[J]. Ironmak. Steelmak., 2016,43(10):769−774. doi: 10.1080/03019233.2016.1234541
    [17] Lee Sunghee, Dong Joon Min. Anionic effect of chloride, fluoride, and sulfide ions on the viscosity of slag melt[J]. J Am Ceram Soc, 2017,100(6):2543−2552. doi: 10.1111/jace.14787
    [18] Zhang Guohua, Chou Kuochen, Zhang Jianliang. Influence of TiO2 on viscosity of aluminosilicate melts[J]. Ironmak. Steelmak., 2013,41(1):47−50.
    [19] Long Minghua, Zhang Dongsheng, Xiao Yangwu, et al. Effect of MgO/Al2O3 ratio on fluidity and structure of blast furnace slag[J]. Journal of Chongqing University of Technology (Natural Science), 2015,29(7):49−53. (龙明华, 张东升, 肖扬武, 等. MgO/Al2O3比值对高炉炉渣流动性和结构的影响[J]. 重庆理工大学学报(自然科学), 2015,29(7):49−53.

    Long Minghua, Zhang Dongshen, Xiao Yangwu, et al. Effect of MgO/Al2O3 ratio on fluidity and structure of blast furnace slag[J]. Journal of Chongqing University of Technology (Natural Science), 2015, 29(7): 49-53.
    [20] Ge Zefeng, Kong Lingxue, Bai Jin, et al. Effect of CaO/Fe2O3 ratio on slag viscosity behavior under entrained flow gasification conditions[J]. Fuel, 2019,258(2):231−236.
    [21] Xie Feng, Lu Diankun, Yang Hongying, et al. Solvent extraction of silver and gold from alkaline cyanide solution with LIX 7950[J]. Mineral Processing and Extractive Metallurgy Review, 2013,35(4):229−238.
    [22] Sutradhar Dipankar, Asit K Chandra, Cl halogen bonding. Nature and effect of substituent at electron donor Cl atom[J]. Chemistry Select, 2020,5(2):554−563.
    [23] Hu Kai, Lü Xuewei, Li Shengping, et al. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for high-titania slag smelting process[J]. Metall. Mater. Trans. B, 2018,49:1963−1973. doi: 10.1007/s11663-018-1284-x
    [24] Zheng Kai, Zhang Zuotai, Liu Lili, et al. Investigation of the viscosity and structural properties of CaO-SiO2-TiO2 slags[J]. Metall. Mater. Trans. B, 2014,45(4):1389−1397. doi: 10.1007/s11663-014-0053-8
    [25] Pang Zhuogang, Xing Xiangdong, Zheng Jianlu, et al. The effect of TiO2 on the thermal stability and structure of high acidity slag for mineral wool production[J]. Journal of Non-Crystalline Solids, 2021,571:121071. doi: 10.1016/j.jnoncrysol.2021.121071
    [26] Joo Hyun Park, Dong Joon Min, Hyo Seok Song. The effect of CaF2 on the viscosities and structures of CaO-SiO2(-MgO)-CaF2 slags[J]. Metall Mater Trans B, 2002,33(4):723−729.
    [27] Xing Xiangdong, Pang Zhuogang, Mo Chuan, et al. Effect of MgO and BaO on viscosity and structure of blast furnace slag[J]. J Non-Cryst Solids, 2020,530:119801. doi: 10.1016/j.jnoncrysol.2019.119801
    [28] Bjoern O Mysen, Frederick J Ryerson, David Virgo. The influence of TiO2 on the structure and derivative properties of silicate melts[J]. Am Mineral, 1980,65(11-12):1150−1165.
    [29] Chen Ziwei, Wang Hao, Sun Yongqi, et al. Insight into the relationship between viscosity and structure of CaO-SiO2-MgO-Al2O3 molten slags[J]. Metallurgical and Materials Transactions B, 2019,50(6):2930−2941. doi: 10.1007/s11663-019-01660-7
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-28
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回